Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 11(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808823

RESUMO

In the last few decades, the combination between nanotechnology and nutraceutics has gained the attention of several research groups. Nutraceuticals are considered as active compounds, abundant in natural products, showing beneficial effects on human health. Unfortunately, the uses, and consequently the health benefits, of many nutraceutical products are limited by their unsuitable chemico-physical features. For example, many nutraceuticals are characterized by low water solubility, low stability and high susceptibility to light and oxygen, poor absorption and potential chemical modifications after their administration. Based on the potential efficacy of nutraceuticals and on their limiting features, nanotechnology could be considered a revolutionary innovation in empowering the beneficial properties of nutraceuticals on human health, thus enhancing their efficacy in several diseases. For this reason, nanotechnology could represent a new frontier in supplementary food. In this review, the most recent nanotechnological approaches are discussed, focusing on their ability to improve the bioavailability of the most common nutraceuticals, providing an overview regarding both the advantages and the possible limitations of the use of several nanodelivery systems. In fact, although the efficacy of smart nanocarriers in improving health benefits deriving from nutraceuticals has been widely demonstrated, the conflicting opinions on the mechanism of action of some nanosystems still reduce their applicability in the therapeutic field.

2.
Int J Pharm ; 601: 120538, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33781879

RESUMO

The last decade has witnessed a burgeoning global movement towards essential and vegetable oils in the food, agriculture, pharmaceutical, cosmetic, and textile industries thanks to their natural and safe status, broad acceptance by consumers, and versatile functional properties. However, efforts to develop new therapy or functional agents based on plant oils have met with challenges of limited stability and/or reduced efficacy. As a result, there has been increased research interest in the encapsulation of plant oils, whereby the nanocarriers serve as barrier between plant oils and the environment and control oil release leading to improved efficacy, reduced toxicity and enhanced patient compliance and convenience. In this review, special concern has been addressed to the encapsulation of essential and vegetable oils in three types of nanocarriers: polymeric nanoparticles, liposomes and solid lipid nanoparticles. First, the chemical composition of essential and vegetable oils was handled. Moreover, we gather together the research findings reported by the literature regarding the different techniques used to generate these nanocarriers with their significant findings. Finally, differences and similarities between these nanocarriers are discussed, along with current and future applications that are warranted by their structures and properties.


Assuntos
Nanopartículas , Óleos Voláteis , Humanos , Lipídeos , Lipossomos , Óleos de Plantas , Polímeros
3.
Int J Pharm ; 593: 120138, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33278497

RESUMO

Plant-based remedies have been widely used for the management of variable diseases due to their safety and less side effects. In the present study, we investigated Saussurea lappa CB. Clarke. (SL) given its largely reported medicinal effects. Specifically, our objective was to provide an insight into a new polymethyl methacrylate based nanocapsules as carriers of SL essential oil and characterize their biologic functions. The nanoparticles were prepared by nanoprecipitation technique, characterized and analyzed for their cytotoxicity, anti-inflammatory, anti-Alzheimer and antidiabetic effects. The results revealed that the developed nanoparticles had a diameter around 145 nm, a polydispersity index of 0.18 and a zeta potential equal to +45 mV and they did not show any cytotoxicity at 25 µg·mL-1. The results also showed an anti-inflammatory activity (reduction in metalloprotease MMP-9 enzyme activity and RNA expression of inflammatory cytokines: TNF-α, GM-CSF and IL1ß), a high anti-Alzheimer's effect (IC50 around 25.0 and 14.9 µg·mL-1 against acetylcholinesterase and butyrylcholinesterase, respectively), and a strong antidiabetic effect (IC50 were equal to 22.9 and 75.8 µg·mL-1 against α-amylase and α-glucosidase, respectively). Further studies are required including the in vivo studies (e.g., preclinical), the pharmacokinetic properties, the bioavailability and the underlying associated metabolic pathways.


Assuntos
Nanocápsulas , Óleos Voláteis , Saussurea , Anti-Inflamatórios/farmacologia , Inibidores da Colinesterase/farmacologia , Hipoglicemiantes/farmacologia , Óleos Voláteis/farmacologia , Extratos Vegetais
4.
Pharmaceutics ; 12(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392726

RESUMO

Essential oils are of paramount importance in pharmaceutical, cosmetic, agricultural, and food areas thanks to their crucial properties. However, stability and bioactivity determine the effectiveness of essential oils. Polymeric nanoencapsulation is a well-established approach for the preservation of essential oils. It offers a plethora of benefits, including improved water solubility, effective protection against degradation, prevention of volatile components evaporation and controlled and targeted release. Among the several techniques used for the design of polymeric nanoparticles, nanoprecipitation has attracted great attention. This review focuses on the most outstanding contributions of nanotechnology in essential oils encapsulation via nanoprecipitation method. We emphasize the chemical composition of essential oils, the principle of polymeric nanoparticle preparation, the physicochemical properties of essential oils loaded nanoparticles and their current applications.

5.
Biomacromolecules ; 21(11): 4442-4456, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32286798

RESUMO

Food waste valorization practices have gained considerable attention focusing on the conversion of the waste into valuable products. In this context, the present study provides an insight into a new Eudragit RS100 based nanosystem as a carrier of date palm (Phoenix dactylifera L.) seeds oil known for its an antidiabetic activity. A priori systematic study was carried out in order to understand the individual impact of all contributing factors considered by the nanoprecipitation method. Then, date seeds oil nanoparticles were prepared, characterized and analyzed for their in vitro inhibition activity against: α-amylase and α-glucosidase. The results showed that the developed nanoparticles had an average diameter around 207 nm, a ζ-potential of +59 mV, and an encapsulation efficiency equal to 97 ± 1% with a loading capacity of 0.48 mg·mg-1. The α-amylase and α-glucosidase IC50 were found to be 87.6 and 155.3 µg·mL-1, respectively. Therefore, this study may surely open new perspectives for the development of novel health-promoting plant oils loaded-nanocarriers for several purposes.


Assuntos
Nanocápsulas , Phoeniceae , Eliminação de Resíduos , Acrilatos , Resinas Acrílicas , Cloretos , Hipoglicemiantes , Metacrilatos , Polimetil Metacrilato , Sementes
6.
Nanomedicine (Lond) ; 15(10): 969-980, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32223518

RESUMO

Aim: To synthesize and examine the impact of free Eudragit® RS 100 nanoparticles (LN01), Quantum dots curcumin-loaded Eudragit RS 100 nanoparticles (LN04), and un-encapsulated curcumin nanoparticles (LN06) on cancerous and bacterial cells. Materials & methods: The LN01, LN04, LN06 were synthesized and characterized by Fourier transform infrared, ζ potential, UV-Vis spectroscopy, transmission electron microscopy and scanning electron microscopy and their biological activities were evaluated. Results: LN04 profoundly inhibited the growth of colon (HCT-116) cancerous cells (10.64% cell viability) and breast cancer (MCF-7) cells (10.32% cell viability) with compared to LN01 and LN06. Normal cells (HEK-293) did not show any inhibition after treatments. In addition, LN04 show better inhibitory action on bacterial growth compared with LN01 and LN06. Conclusion: We suggest that LN04 selectively target cancerous and bacterial cells and therefore possess potential anticancer and antibacterial capabilities.


Assuntos
Bactérias/efeitos dos fármacos , Neoplasias da Mama , Neoplasias do Colo , Curcumina , Nanopartículas , Pontos Quânticos , Neoplasias da Mama/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Curcumina/farmacologia , Células HEK293 , Humanos , Células MCF-7 , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...