Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612918

RESUMO

Patients with first-diagnosed atrial fibrillation (FDAF) exhibit major adverse cardiovascular events (MACEs) during follow-up. Preclinical models have demonstrated that thrombo-inflammation mediates adverse cardiac remodeling and atherothrombotic events. We have hypothesized that thrombin activity (FIIa) links coagulation with inflammation and cardiac fibrosis/dysfunction. Surrogate markers of the thrombo-inflammatory response in plasma have not been characterized in FDAF. In this prospective longitudinal study, patients presenting with FDAF (n = 80), and 20 matched controls, were included. FIIa generation and activity in plasma were increased in the patients with early AF compared to the patients with chronic cardiovascular disease without AF (controls; p < 0.0001). This increase was accompanied by elevated biomarkers (ELISA) of platelet and endothelial activation in plasma. Pro-inflammatory peripheral immune cells (TNF-α+ or IL-6+) that expressed FIIa-activated protease-activated receptor 1 (PAR1) (flow cytometry) circulated more frequently in patients with FDAF compared to the controls (p < 0.0001). FIIa activity correlated with cardiac fibrosis (collagen turnover) and cardiac dysfunction (NT-pro ANP/NT-pro BNP) surrogate markers. FIIa activity in plasma was higher in patients with FDAF who experienced MACE. Signaling via FIIa might be a presumed link between the coagulation system (tissue factor-FXa/FIIa-PAR1 axis), inflammation, and pro-fibrotic pathways (thrombo-inflammation) in FDAF.


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/diagnóstico , Estudos Longitudinais , Estudos Prospectivos , Receptor PAR-1 , Biomarcadores , Fibrose
2.
Biomedicines ; 11(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672684

RESUMO

BACKGROUND: According to the leaky gut concept, microbial products (e.g., lipopolysaccharide, LPS) enter the circulation and mediate pro-inflammatory immunological responses. Higher plasma LPS levels have been reported in patients with various cardiovascular diseases, but not specifically during early atrial fibrillation (AF). METHODS: We studied data and blood samples from patients presenting with first-diagnosed AF (FDAF) (n = 80) and 20 controls. RESULTS: Circulating biomarkers that are suggestive of mucosal inflammation (zonulin, mucosal adhesion molecule MAdCAM-1) and intestinal epithelium damage (intestinal fatty acid binding protein, IFABP) were increased in the plasma of patients with FDAF when compared to patients with chronic cardiovascular diseases but without AF. Surrogate plasma markers of increased intestinal permeability (LPS, CD14, LPS-binding protein, gut-derived LPS-neutralising IgA antibodies, EndoCAbs) were detected during early AF. A reduced ratio of IgG/IgM EndoCAbs titres indicated chronic endotoxaemia. Collagen turnover biomarkers, which corresponded to the LPS values, suggested an association of gut-derived low-grade endotoxaemia with adverse structural remodelling. The LPS concentrations were higher in FDAF patients who experienced a major adverse cardiovascular event. CONCLUSIONS: Intestinal barrier dysfunction and microbial translocation accompany FDAF. Improving gut permeability and low-grade endotoxaemia might be a potential therapeutic approach to reducing the disease progression and cardiovascular complications in FDAF.

3.
ASAIO J ; 69(1): 61-68, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35759721

RESUMO

Measurement of oxygen uptake (VO 2 ) and carbon dioxide removal (VCO 2 ) on membrane lungs (MLs) during extracorporeal membrane oxygenation (ECMO) provides potential for improved and safer therapy. Real-time monitoring of ML function and degradation, calculating caloric needs as well as cardiac output, and weaning algorithms are among the future possibilities. Our study compared the continuous measurement of the standalone Quantum Diagnostics System (QDS) with the published Measuring Energy Expenditure in ECMO patients (MEEP) approach, which calculates sequential VO 2 and VCO 2 values via blood gas analysis and a physiologic gas content model. Thirty-nine datasets were acquired during routine venovenous ECMO intensive care treatment and analyzed. VO 2 was clinically relevant underestimated via the blood-sided measurement of the QDS compared to the MEEP approach (mean difference -42.61 ml/min, limits of agreement [LoA] -2.49/-87.74 ml), which could be explained by the missing dissolved oxygen fraction of the QDS equation. Analysis of VCO 2 showed scattered values with wide limits of agreement (mean difference 54.95 ml/min, LoA 231.26/-121.40 ml/min) partly explainable by a calculation error of the QDS. We described potential confounders of gas-sided measurements in general which need further investigation and recommendations for enhanced devices.


Assuntos
Oxigenação por Membrana Extracorpórea , Humanos , Pulmão/metabolismo , Oxigênio , Dióxido de Carbono , Débito Cardíaco
4.
Cells ; 12(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36611934

RESUMO

BACKGROUND: Atrial myopathy and atrial fibrillation (AF) accompany thrombo-inflammation. This facilitates disease progression and promotes major adverse cardiovascular events (MACEs). Thrombin receptor (protease-activated receptor 1, PAR1) signalling is central in mediating thrombo-inflammation. We hypothesised that PAR1 signalling links coagulation and inflammation through cytotoxic CD8+ T lymphocytes in patients presenting with first-diagnosed AF (FDAF). METHODS: A total of 210 patients were studied. We included data and blood samples from patients presenting with FDAF (n = 160), cardiac tissue from patients with paroxysmal AF (n = 32) and 20 controls. RESULTS: During early AF, a pro-inflammatory and cytotoxic subset of T lymphocytes (CD8+) circulated more frequently when compared to patients with chronic cardiovascular disease but without AF, accompanied by elevated plasma levels of CD8+ effector molecules, which corresponded to biomarkers of adverse cardiac remodelling and atrial dysfunction. Activation of tissue factor (TF) and PAR1 was associated with pro-inflammatory and cytotoxic effector functions. PAR1-related CD8+ cell activation was more frequent in FDAF patients that experienced a MACE. CONCLUSIONS: In patients with FDAF, the TF-factor Xa-factor IIa-axis contributes to thrombo-inflammation via PAR1 in CD8+ T cells. Intervening in this cascade might be a promising synergistic approach to reducing disease progression and the vascular complications of AF.


Assuntos
Fibrilação Atrial , Humanos , Receptor PAR-1 , Linfócitos T CD8-Positivos , Inflamação/complicações , Progressão da Doença
5.
Cells ; 10(12)2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34944024

RESUMO

BACKGROUND: Protease-activated receptor 1 (PAR1) and toll-like receptors (TLRs) are inflammatory mediators contributing to atherogenesis and atherothrombosis. Vorapaxar, which selectively antagonizes PAR1-signaling, is an approved, add-on antiplatelet therapy for secondary prevention. The non-hemostatic, platelet-independent, pleiotropic effects of vorapaxar have not yet been studied. METHODS AND RESULTS: Cellular targets of PAR1 signaling in the vasculature were identified in three patient cohorts with atherosclerotic disease. Evaluation of plasma biomarkers (n = 190) and gene expression in endomyocardial biopsies (EMBs) (n = 12) revealed that PAR1 expression correlated with endothelial activation and vascular inflammation. PAR1 colocalized with TLR2/4 in human carotid plaques and was associated with TLR2/4 gene transcription in EMBs. In addition, vorapaxar reduced atherosclerotic lesion size in apolipoprotein E-knock out (ApoEko) mice. This reduction was associated with reduced expression of vascular adhesion molecules and TLR2/4 presence, both in isolated murine endothelial cells and the aorta. Thrombin-induced uptake of oxLDL was augmented by additional TLR2/4 stimulation and abrogated by vorapaxar. Plaque-infiltrating pro-inflammatory cells were reduced in vorapaxar-treated ApoEko mice. A shift toward M2 macrophages paralleled a decreased transcription of pro-inflammatory cytokines and chemokines. CONCLUSIONS: PAR1 inhibition with vorapaxar may be effective in reducing residual thrombo-inflammatory event risk in patients with atherosclerosis independent of its effect on platelets.


Assuntos
Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Lactonas/administração & dosagem , Piridinas/administração & dosagem , Receptor PAR-1/genética , Doenças Vasculares/tratamento farmacológico , Animais , Aterosclerose/genética , Aterosclerose/patologia , Feminino , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Lactonas/efeitos adversos , Masculino , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Agregação Plaquetária/efeitos dos fármacos , Piridinas/efeitos adversos , Receptor PAR-1/antagonistas & inibidores , Trombina/genética , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Molécula 1 de Adesão de Célula Vascular/genética , Doenças Vasculares/genética , Doenças Vasculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...