Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 839: 156267, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643142

RESUMO

Sustainability of livestock production is a highly contested issue in agricultural sustainability discourse. This study aimed to assess the environmental impact of farms using semi-natural grasslands in Finland, or so-called High Nature Value (HNV) farms. We estimated the environmental impact of 11 such farms, including greenhouse gas emissions (GHG), nitrogen (N) balance, land occupation, and carbon storage. We also accounted for unique biodiversity, defined in this study as communities that are dependent on semi-natural grasslands. We compared these to the alternative states of the farms, specifically a hypothetical farm with the same production output but without access to semi-natural grasslands. GHG emissions at the farm level (tCO2eq/ha) in HNV farms were 64% lower than on the alternative farms; GHG emissions at the product level (tCO2eq/t LW) and N balance (N kg/ha) were 31% and 235% lower, respectively. The carbon stocks were 163% higher at farm level. Biodiversity values, indicated by the share of semi-natural grassland in management, ranged from 23% to 83% on HNV farms. Six out of eleven farms would need to increase their arable land occupation by an average of 39% of arable land to fulfil their needs for animal feed if they did not utilize semi-natural grassland. This study contributes to growing evidence that HNV farming systems can support sustainable production by minimising arable land occupation, reducing nutrient loses, and increasing carbon storage while maintaining unique biodiversity.


Assuntos
Efeito Estufa , Gado , Agricultura , Animais , Carbono , Fazendas , Finlândia
2.
J Dairy Sci ; 102(8): 7102-7117, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31155260

RESUMO

Alternative protein sources such as microalgae and faba beans may have environmental benefits over rapeseed. We studied the effects of rapeseed meal (RSM) or faba beans (FB) as a sole protein feed or as protein feeds partially substituted with Spirulina platensis (spirulina) microalgae on milk production, N utilization, and AA metabolism of dairy cows. Eight multiparous Finnish Ayrshire cows (113 ± 36.3 d in milk; mean ± SD) were used in a balanced, replicated 4 × 4 Latin square with 2 × 2 factorial arrangement of treatments and 21-d periods. Four cows in one Latin square were rumen cannulated. Treatments were 2 isonitrogenously fed protein sources, RSM or rolled FB, or one of these sources with half of its crude protein substituted by spirulina (RSM-SPI and FB-SPI). Cows had ad libitum access to total mixed rations consisting of grass silage, barley, sugar beet pulp, minerals, and experimental protein feed. The substitution of RSM with FB did not affect dry matter intake (DMI) but decreased neutral detergent fiber intake and increased the digestibility of other nutrients. Spirulina in the diet decreased DMI and His intake. Spirulina had no effect on Met intake in cows on RSM diets but increased it in those on FB diets. Energy-corrected milk (ECM) and protein yields were decreased when RSM was substituted by FB. Milk and lactose yields were decreased in cows on the RSM-SPI diet compared with the RSM diet but increased in those on FB-SPI compared with FB. The opposite was true for milk fat and protein concentrations; thus, spirulina in the diet did not affect ECM. Feed conversion efficiency (ECM:DMI) increased in cows on FB diets with spirulina, whereas little effect was observed for those on RSM diets. The substitution of RSM by FB decreased arterial concentration of Met and essential AA. Spirulina in the diet increased milk urea N and ruminal NH4-N and decreased the efficiency of N utilization in cows on RSM diets, whereas those on FB diets showed opposite results. Met likely limited milk production in cows on the FB diet as evidenced by the decrease in arterial Met concentration and milk protein yield when RSM was substituted by FB. The results suggest the potential to improve milk production response to faba beans with supplementation of Met-rich feeds such as spirulina. This study also confirmed spirulina had poorer palatability than RSM and FB despite total mixed ration feeding and lower milk production when spirulina partially replaced RSM.


Assuntos
Aminoácidos/metabolismo , Bovinos/fisiologia , Microalgas , Leite/metabolismo , Nitrogênio/metabolismo , Spirulina , Animais , Brassica rapa , Dieta/veterinária , Feminino , Lactação , Lactose/análise , Leite/efeitos dos fármacos , Proteínas do Leite/análise , Silagem/análise , Vicia faba
3.
Animal ; 12(s2): s295-s309, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30318027

RESUMO

Ruminant-based food production faces currently multiple challenges such as environmental emissions, climate change and accelerating food-feed-fuel competition for arable land. Therefore, more sustainable feed production is needed together with the exploitation of novel resources. In addition to numerous food industry (milling, sugar, starch, alcohol or plant oil) side streams already in use, new ones such as vegetable and fruit residues are explored, but their conservation is challenging and production often seasonal. In the temperate zones, lipid-rich camelina (Camelina sativa) expeller as an example of oilseed by-products has potential to enrich ruminant milk and meat fat with bioactive trans-11 18:1 and cis-9,trans-11 18:2 fatty acids and mitigate methane emissions. Regardless of the lower methionine content of alternative grain legume protein relative to soya bean meal (Glycine max), the lactation performance or the growth of ruminants fed faba beans (Vicia faba), peas (Pisum sativum) and lupins (Lupinus sp.) are comparable. Wood is the most abundant carbohydrate worldwide, but agroforestry approaches in ruminant nutrition are not common in the temperate areas. Untreated wood is poorly utilised by ruminants because of linkages between cellulose and lignin, but the utilisability can be improved by various processing methods. In the tropics, the leaves of fodder trees and shrubs (e.g. cassava (Manihot esculenta), Leucaena sp., Flemingia sp.) are good protein supplements for ruminants. A food-feed production system integrates the leaves and the by-products of on-farm food production to grass production in ruminant feeding. It can improve animal performance sustainably at smallholder farms. For larger-scale animal production, detoxified jatropha (Jatropha sp.) meal is a noteworthy alternative protein source. Globally, the advantages of single-cell protein (bacteria, yeast, fungi, microalgae) and aquatic biomass (seaweed, duckweed) over land crops are the independence of production from arable land and weather. The chemical composition of these feeds varies widely depending on the species and growth conditions. Microalgae have shown good potential both as lipid (e.g. Schizochytrium sp.) and protein supplements (e.g. Spirulina platensis) for ruminants. To conclude, various novel or underexploited feeds have potential to replace or supplement the traditional crops in ruminant rations. In the short-term, N-fixing grain legumes, oilseeds such as camelina and increased use of food and/or fuel industry by-products have the greatest potential to replace or supplement the traditional crops especially in the temperate zones. In the long-term, microalgae and duckweed of high-yield potential as well as wood industry by-products may become economically competitive feed options worldwide.


Assuntos
Ração Animal/análise , Ácidos Graxos/análise , Metano/metabolismo , Leite/química , Valor Nutritivo , Ruminantes/metabolismo , Animais , Brassicaceae , Mudança Climática , Produtos Agrícolas , Suplementos Nutricionais , Fabaceae , Feminino , Lignina/metabolismo , Carne/análise , Óleos de Plantas/metabolismo , Poaceae
4.
J Environ Qual ; 30(4): 1371-81, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11476516

RESUMO

In this paper, a field study was carried out to examine the effect of flue gas desulfurization (FGD) by-product on water quality at an underground coal mine in central-eastern Ohio. Flue gas desulfurizalion by-product was injected into the down-dip portions of the Robert-Dawson mine in an attempt to seal major seeps exiting the mine and to coat exposed pyritic surfaces. Immediately following grout injection, significant increases in acidity, iron, aluminum, sulfur, and calcium were observed at most surface and ground water locations near where grouting was carried out. Following this initial flush of elements, concentrations of most constituents have decreased to near pre-grouting levels. Data from the site and geochemical modeling suggest that an increase in water level or rerouting of drainage flow resulted in the dissolution of iron and aluminum sulfate salts and ferrihydrite. Dissolution of the FGD grout material resulted in increases in calcium and sulfate concentrations in the drainage waters. Water within the mine voids was saturated with respect to calcium sulfate and gypsum immediately following grout injection. Based on an analysis of core samples obtained from the site, acid mine drainage (AMD) was in contact with at least some portions of the grout and this resulted in grout weathering. Subsequent transport of calcium and sulfate to the underclay, perhaps by fracture flow, has resulted in the deposition of gypsum and calcium sulfate solids.


Assuntos
Carvão Mineral , Poluentes do Solo/análise , Enxofre/química , Poluentes da Água/análise , Silicatos de Alumínio , Sulfato de Cálcio/química , Argila , Gases , Incineração , Mineração , Eliminação de Resíduos Líquidos , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...