Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Mol Biochem Parasitol ; 255: 111581, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37478919

RESUMO

Schistosoma mansoni is a parasitic flatworm that causes a human disease called schistosomiasis, or bilharzia. At the genomic level, S. mansoni is AT-rich, but has some compositional heterogeneity. Indeed, some regions of its genome are GC-rich, mainly in the regions located near the extreme ends of the chromosomes. Recently, we showed that, despite the strong bias towards A/T ending codons, highly expressed genes tend to use GC-rich codons. Here, we address the following question: are highly expressed sequences biased in their amino acid frequencies? Our analyses show that these sequences in S. mansoni, as in species ranging from bacteria to human, are strongly biased in nucleotide composition. Highly expressed genes tend to use GC-rich codons (in the first and second codon positions), which code the energetically cheapest amino acids. Therefore, we conclude that amino acid usage, at least in highly expressed genes, is strongly shaped by natural selection to avoid energetically expensive residues. Whether this is an adaptation to the parasitic way of life of S. mansoni, is unclear since the same pattern occurs in free-living species.


Assuntos
Platelmintos , Animais , Humanos , Platelmintos/genética , Schistosoma mansoni/genética , Aminoácidos/genética , Códon , Bactérias
3.
J Mol Evol ; 91(4): 382-390, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37264211

RESUMO

The standard genetic code determines that in most species, including viruses, there are 20 amino acids that are coded by 61 codons, while the other three codons are stop triplets. Considering the whole proteome each species features its own amino acid frequencies, given the slow rate of change, closely related species display similar GC content and amino acids usage. In contrast, distantly related species display different amino acid frequencies. Furthermore, within certain multicellular species, as mammals, intragenomic differences in the usage of amino acids are evident. In this communication, we shall summarize some of the most prominent and well-established factors that determine the differences found in the amino acid usage, both across evolution and intragenomically.


Assuntos
Aminoácidos , Código Genético , Animais , Aminoácidos/genética , Códon/genética , Composição de Bases , Proteoma/genética , Evolução Molecular , Mamíferos/genética
4.
Mol Biochem Parasitol ; 247: 111445, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942292

RESUMO

Schistosoma mansoni is a trematode flatworm that parasitizes humans and produces a disease called bilharzia. At the genomic level, it is characterized by a low genomic GC content and an "isochore-like" structure, where GC-richest regions, mainly placed at the extremes of the chromosomes, are interspersed with low GC-regions. Furthermore, the GC-richest regions are at the same time the gene-richest, and where the most heavily expressed genes are placed. Taking these features into account, we decided to reanalyze the codon usage of this flatworm. Our results show that a) when all genes are considered together, the strong mutational bias towards A + T leads to a predominance of A/T-ending codons, b) a multivariate analysis discriminates between highly and lowly expressed genes, c) the sequences expressed at highest levels display a significant increase in G/C-ending codons, d) when comparing the molecular distances with a closely related species the synonymous distance in highly expressed genes is significantly lower than in lowly expressed sequences. Therefore, we conclude that despite previous results, which were performed with a small sample of genes, codon usage in S. mansoni is the result of two forces that operate in opposite directions: while mutational bias leads to a predominance of A/T codons, translational selection, working at the level of speed, increment G/C ending triplets.


Assuntos
Uso do Códon , Platelmintos , Animais , Composição de Bases , Códon , Platelmintos/genética , Schistosoma mansoni/genética
5.
J Mol Evol ; 89(9-10): 589-593, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34383106

RESUMO

Since the genetic code is degenerate, several codons are translated to the same amino acid. Although these triplets were historically considered to be "synonymous" and therefore expected to be used at rather equal frequencies in all genomes, we now know that this is not the case. Indeed, since several coding sequences were obtained in the late '70s and early '80s in the last century, coming from either the same or different species, it was evident that (a) each genome, taken globally, displayed different codon usage patterns, which means that different genomes display a particular global codon usage table when all genes are considered together, and (b) there is a strong intragenomic diversity: in other words, within a given species the codon usage pattern can (and usually do) differ greatly among genes in the same genome. These different patterns were attributed to two main factors: first, the mutational bias characteristic of each genome, which determines that GC- poor species display a general bias towards A/T codons while the reverse is true for GC- rich species. Second, the differences in codon usage among genes from the same species are due to natural selection acting at the level of translation, in such a way that highly expressed genes tend to use codons that match with the most abundant isoacceptor tRNAs. Thus, these genes are translated at a highest rate, which in turn leads to avoid the limiting factor in translation which is the number of available ribosomes per cell. Although these explanations are still valid, new factors are almost constantly postulated to affect codon usage. In this mini review, we shall try to summarize them.


Assuntos
Uso do Códon , Código Genético , Códon/genética , RNA de Transferência/genética , Seleção Genética
6.
Front Genet ; 10: 771, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543897

RESUMO

In the present work, we performed a comparative genome-wide analysis of 22 species representative of the main clades and lifestyles of the phylum Platyhelminthes. We selected a set of 700 orthologous genes conserved in all species, measuring changes in GC content, codon, and amino acid usage in orthologous positions. Values of 3rd codon position GC spanned over a wide range, allowing to discriminate two distinctive clusters within freshwater turbellarians, Cestodes and Trematodes respectively. Furthermore, a hierarchical clustering of codon usage data differs remarkably from the phylogenetic tree. Additionally, we detected a synonymous codon usage bias that was more dramatic in extreme GC-poor or GC-rich genomes, i.e., GC-poor Schistosomes preferred to use AT-rich terminated synonymous codons, while GC-rich M. lignano showed the opposite behavior. Interestingly, these biases impacted the amino acidic usage, with preferred amino acids encoded by codons following the GC content trend. These are associated with non-synonymous substitutions at orthologous positions. The detailed analysis of the synonymous and non-synonymous changes provides evidence for a two-hit mechanism where both mutation and selection forces drive the diverse coding strategies of flatworms.

8.
Sci Rep ; 8(1): 17820, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30546029

RESUMO

Recent investigations have shown that isochores are characterized by a 3-D structure which is primarily responsible for the topology of chromatin domains. More precisely, an analysis of human chromosome 21 demonstrated that low-heterogeneity, GC-poor isochores are characterized by the presence of oligo-Adenines that are intrinsically stiff, curved and unfavorable for nucleosome binding. This leads to a structure of the corresponding chromatin domains, the Lamina Associated Domains, or LADs, which is well suited for interaction with the lamina. In contrast, the high-heterogeneity GC-rich isochores are in the form of compositional peaks and valleys characterized by increasing gradients of oligo-Guanines in the peaks and oligo-Adenines in the valleys that lead to increasing nucleosome depletions in the corresponding chromatin domains, the Topological Associating Domains, or TADs. These results encouraged us to investigate in detail the di- and tri-nucleotide profiles of 100 Kb segments of chromosome 21, as well as those of the di- to octa-Adenines and di- to octa-Guanines in some representative regions of the chromosome. The results obtained show that the 3-D structures of isochores and chromatin domains depend not only upon oligo-Adenines and oligo-Guanines but also, to a lower but definite extent, upon the majority of di- and tri-nucleotides. This conclusion has strong implications for the biological role of non-coding sequences.


Assuntos
Cromossomos Humanos Par 21/química , Genoma Humano , Isocoros/química , Isocoros/síntese química , Nucleossomos/química , Humanos
9.
An. Facultad Med. (Univ. Repúb. Urug., En línea) ; 5(2): 12-28, dic. 2018. tab, graf
Artigo em Espanhol | LILACS, BNUY, UY-BNMED | ID: biblio-1088677

RESUMO

El genoma humano, como el de todos los mamíferos y aves, es un mosaico de isocoros, los que son regiones muy largas de ADN (>>100 kb) que son homogéneas en cuanto a su composición de bases. Los isocoros pueden ser divididos en un pequeño número de familias que cubren un amplio rango de niveles de GC (GC es la relación molar de guanina+citosina en el ADN). En el genoma humano encontramos cinco familias, que (yendo de valores bajos a altos de GC) son L1, L2, H1, H2 y H3. Este tipo de organización tiene importantes consecuencias funcionales, tales como la diferente concentración de genes, su regulación, niveles de transcripción, tasas de recombinación, tiempo de replicación, etc. Además, la existencia de los isocoros lleva a las llamadas "correlaciones composicionales", lo que significa que en la medida en que diferentes secuencias están localizadas en diferentes isocoros, todas sus regiones (exones y sus tres posiciones de los codones, intrones, etc.) cambian su contenido en GC, y como consecuencia, cambian tanto el uso de aminoácidos como de codones sinónimos en cada familia de isocoros. Finalmente, discutimos el origen de estas estructuras en un marco evolutivo.


The human genome, as the genome of all mammals and birds, are mosaic of isochores, which are very long streches (>> 100 kb) of DNA that are homogeneous in base composition. Isochores can be divided in a small number of families that cover a broad range of GC levels (GC is the molar ratio of guanine+cytosine in DNA). In the human genome, we find five families, which are (going from GC- poor to GC- rich) L1, L2, H1, H2 and H3. This organization has important consequences, as is the case of the concentration of genes, their regulation, transcription levels, rate of recombination, time of replication, etc. Furthermore, the existence of isochores has as a consequence the so called "compositional correlations", which means that as long as sequences are placed in different families of isochores, all of their regions (exons and their three codon positions, introns, etc.) change their GC content, and as a consequence, both codon and amino acids usage change in each isochore family. Finally, we discuss the origin of isochores within an evolutioary framework.


O genoma humano, como todos os mamíferos e aves, é um mosaico de isocóricas, que são muito longas regiões de ADN (>> 100 kb) que são homogéneos na sua composição de base. Isóquos podem ser divididos em um pequeno número de famílias que cobrem uma ampla gama de níveis de GC (GC é a razão molar de guanina + citosina no DNA). No genoma humano, encontramos cinco famílias, que (variando de valores baixos a altos de GC) são L1, L2, H1, H2 e H3. Este tipo de organização tem importantes conseqüências funcionais, como a diferente concentração de genes, sua regulação, níveis de transcrição, taxas de recombinação, tempo de replicação, etc. Além disso, a existência de isocóricas portada chamado "correlações de composição", o que significa que, na medida em que diferentes sequências estão localizados em diferentes isocóricas, todas as regiões (exs e três posições de codões, intrs, etc.) mudam seu conteúdo em GC e, como consequência, alteram tanto o uso de aminoácidos quanto de códons sinônimos em cada família de isócoros. Finalmente, discutimos a origem dessas estruturas em uma estrutura evolucionária.


Assuntos
Humanos , Genoma Humano/genética , Isocoros/genética , Composição de Bases , Íntrons/genética
11.
Genome Biol Evol ; 8(8): 2312-8, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27435793

RESUMO

Eukaryotic genomes are compositionally heterogeneous, that is, composed by regions that differ in guanine-cytosine (GC) content (isochores). The most well documented case is that of vertebrates (mainly mammals) although it has been also noted among unicellular eukaryotes and invertebrates. In the human genome, regarded as a typical mammal, this heterogeneity is associated with several features. Specifically, genes located in GC-richest regions are the GC3-richest, display CpG islands and have shorter introns. Furthermore, these genes are more heavily expressed and tend to be located at the extremes of the chromosomes. Although the compositional heterogeneity seems to be widespread among eukaryotes, the associated properties noted in the human genome and other mammals have not been investigated in depth in other taxa Here we provide evidence that the genome of the parasitic flatworm Schistosoma mansoni is compositionally heterogeneous and exhibits an isochore-like structure, displaying some features associated, until now, only with the human and other vertebrate genomes, with the exception of gene concentration.


Assuntos
Evolução Molecular , Genoma Helmíntico , Isocoros/genética , Schistosoma mansoni/genética , Animais , Sequência Rica em GC
12.
BMC Genomics ; 14: 149, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23497072

RESUMO

BACKGROUND: Trypanosoma vivax is the earliest branching African trypanosome. This crucial phylogenetic position makes T. vivax a fascinating model to tackle fundamental questions concerning the origin and evolution of several features that characterize African trypanosomes, such as the Variant Surface Glycoproteins (VSGs) upon which antibody clearing and antigenic variation are based. Other features like gene content and trans-splicing patterns are worth analyzing in this species for comparative purposes. RESULTS: We present a RNA-seq analysis of the bloodstream stage of T. vivax from data obtained using two complementary sequencing technologies (454 Titanium and Illumina). Assembly of 454 reads yielded 13385 contigs corresponding to proteins coding genes (7800 of which were identified). These sequences, their annotation and other features are available through an online database presented herein. Among these sequences, about 1000 were found to be species specific and 50 exclusive of the T. vivax strain analyzed here. Expression patterns and levels were determined for VSGs and the remaining genes. Interestingly, VSG expression level, although being high, is considerably lower than in Trypanosoma brucei. Indeed, the comparison of surface protein composition between both African trypanosomes (as inferred from RNA-seq data), shows that they are substantially different, being VSG absolutely predominant in T. brucei, while in T. vivax it represents only about 55%. This raises the question concerning the protective role of VSGs in T. vivax, hence their ancestral role in immune evasion.It was also found that around 600 genes have their unique (or main) trans-splice site very close (sometimes immediately before) the start codon. Gene Ontology analysis shows that this group is enriched in proteins related to the translation machinery (e.g. ribosomal proteins, elongation factors). CONCLUSIONS: This is the first RNA-seq data study in trypanosomes outside the model species T. brucei, hence it provides the possibility to conduct comparisons that allow drawing evolutionary and functional inferences. This analysis also provides several insights on the expression patterns and levels of protein coding sequences (such as VSG gene expression), trans-splicing, codon patterns and regulatory mechanisms. An online T. vivax RNA-seq database described herein could be a useful tool for parasitologists working with trypanosomes.


Assuntos
Proteínas de Protozoários/metabolismo , Transcriptoma , Trypanosoma vivax/metabolismo , Regiões 5' não Traduzidas , Animais , Sequência de Bases , Mapeamento de Sequências Contíguas , Perfilação da Expressão Gênica , Genes de Protozoários , Estágios do Ciclo de Vida , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Anotação de Sequência Molecular , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Sítios de Splice de RNA , Análise de Sequência de DNA , Ovinos , Trypanosoma vivax/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
13.
Mutat Res ; 600(1-2): 102-12, 2006 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16650445

RESUMO

The last release of p53 somatic mutation database contains more than 20,000 of mutation among which 951 are silent (synonymous). This striking amount of silent mutations is much more than what would be expected if synonymous mutations were effectively neutral. The prevalent explanation to reconcile this vast amount of silent mutations with the neutral expectation is that they are just the subproduct of the hypermutability process that affect cancer cells. Some evidences have been presented in this direction, and the explanation has been taken as granted. Assuming that silent mutations are effectively neutral has major implication in the investigation of mutational processes that affect the gene encoding the p53 protein, since on the basis of this assumption they are considered the Null hypothesis, for instance for measuring and comparing among tissues the endogenous mutability. From this it follows that determining whether silent mutations in the p53 gene, and in all disease genes in general, are or not basically mutational noise, is of paramount importance. In this paper we readdress this topic by testing whether there is a relationship between the spatial distribution of silent mutations inside the p53 gene and functional significant features of the gene. For this purpose we divided the population of silent mutations in three groups: those that are found accompanied by other mutations (doublets and multiplest), those that were isolated as singlets, but the same mutation was also isolated as being part of a doublet (or multiplet) in another individual. And the last group is composed by those that were always found as singlets and never as being part of a doublet or a multiplet. This last group was expected to be enriched in functionally significant silent mutations. We found that all silent mutations, but particularly those of the last group, are preferentially located in conserved amino acid positions (i.e. functionally important amino acids) and also tend to be located inside suspected splicing enhancers. Noteworthy, this association remains even after eliminating the possible contribution of mutation hotspots. Besides, we present additional evidence in the direction that these putative splicing enhancers are real functional enhancers.


Assuntos
Elementos Facilitadores Genéticos , Mutação , Splicing de RNA , Proteína Supressora de Tumor p53/genética , Sequência de Aminoácidos , Animais , Códon , Sequência Conservada , Evolução Molecular , Humanos
14.
Gene ; 300(1-2): 161-8, 2002 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-12468097

RESUMO

In this work we re-examined the hypothesis that the variation in GC content in the human genome is due to different regional mutational biases. For this purpose we inferred the mutational pattern by using mutation databases that are available for many genes associated with human genetic diseases. The assumption of this approach is that such mutations reflect the actual frequency distribution of mutations as they arise in the population. Four classes of genes, classified according to their GC(3) level, were included in this study: GC(3)-poor genes (GC(3)<45%), genes with intermediate GC(3) content (45%75%). Our results show that most genes are under AT mutational biases, with very little variation compared to the expectations of neutral GC level. It is noteworthy that the mutational patterns in the GC(3)-rich genes do not appear to account for their GC(3)-richness. Instead, GC(3)-rich and very GC(3)-rich genes exhibit patterns of mutations that yield expectations of neutral GC(3) content that are much lower than their actual GC(3).


Assuntos
Códon/genética , Genoma Humano , Isocoros/genética , Composição de Bases , Ilhas de CpG/genética , Bases de Dados de Ácidos Nucleicos , Sequência Rica em GC/genética , Humanos , Isocoros/química , Mutação , Fenilalanina Hidroxilase/genética , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...