Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 169: 111-120, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30870792

RESUMO

Glycolipid mimetics consisting of a bicyclic polyhydroxypiperidine-cyclic carbamate core and a pseudoanomeric hydrophobic tail, termed sp2-iminosugar glycolipids (sp2-IGLs), target microglia during neuroinflammatory processes. Here we have synthesized and investigated new variants of sp2-IGLs for their ability to suppress the activation of human monocyte-derived dendritic cells (DCs) by lipopolysaccharide (LPS) signaling through Toll-like receptor 4. We report that the best lead was (1R)-1-dodecylsulfonyl-5N,6O-oxomethylidenenojirimycin (DSO2-ONJ), able to inhibit LPS-induced TNFα production and maturation of DCs. Immunovisualization experiments, using a mannoside glycolipid conjugate (MGC) that also suppress LPS-mediated DC activation as control, evidenced a distinct mode of action for the sp2-IGLs: unlike MGCs, DSO2-ONJ did not elicit internalization of the LPS co-receptor CD14 or induce its co-localization with the Toll-like receptor 4. In a mouse model of LPS-induced acute inflammation, DSO2-ONJ demonstrated anti-inflammatory activity by inhibiting the production of the pro-inflammatory interleukin-6. The ensemble of the data highlights sp2-IGLs as a promising new class of molecules against inflammation by interfering in Toll-like receptor intracellular signaling.


Assuntos
Glicolipídeos/farmacologia , Inflamação/tratamento farmacológico , Lipopolissacarídeos/antagonistas & inibidores , Doença Aguda , Animais , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Relação Dose-Resposta a Droga , Glicolipídeos/síntese química , Glicolipídeos/química , Humanos , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade
2.
J Allergy Clin Immunol ; 143(2): 712-725.e5, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29800647

RESUMO

BACKGROUND: Autosomal dominant gain-of-function mutations in human stimulator of interferon genes (STING) lead to a severe autoinflammatory disease called STING-associated vasculopathy with onset in infancy that is associated with enhanced expression of interferon-stimulated gene transcripts. OBJECTIVE: The goal of this study was to analyze the phenotype of a new mouse model of STING hyperactivation and the role of type I interferons in this system. METHODS: We generated a knock-in model carrying an amino acid substitution (V154M) in mouse STING, corresponding to a recurrent mutation seen in human patients with STING-associated vasculopathy with onset in infancy. Hematopoietic development and tissue histology were analyzed. Lymphocyte activation and proliferation were assessed in vitro. STING V154M/wild-type (WT) mice were crossed to IFN-α/ß receptor (IFNAR) knockout mice to evaluate the type I interferon dependence of the mutant Sting phenotype recorded. RESULTS: In STING V154M/WT mice we detected variable expression of inflammatory infiltrates in the lungs and kidneys. These mice showed a marked decrease in survival and developed a severe combined immunodeficiency disease (SCID) affecting B, T, and natural killer cells, with an almost complete lack of antibodies and a significant expansion of monocytes and granulocytes. The blockade in B- and T-cell development was present from early immature stages in bone marrow and thymus. In addition, in vitro experiments revealed an intrinsic proliferative defect of mature T cells. Although the V154M/WT mutant demonstrated increased expression of interferon-stimulated genes, the SCID phenotype was not reversed in STING V154M/WT IFNAR knockout mice. However, the antiproliferative defect in T cells was rescued partially by IFNAR deficiency. CONCLUSIONS: STING gain-of-function mice developed an interferon-independent SCID phenotype with a T-cell, B-cell, and natural killer cell developmental defect and hypogammaglobulinemia that is associated with signs of inflammation in lungs and kidneys. Only the intrinsic proliferative defect of T cells was partially interferon dependent.


Assuntos
Linfócitos B/fisiologia , Inflamação/genética , Células Matadoras Naturais/imunologia , Proteínas de Membrana/genética , Mutação/genética , Imunodeficiência Combinada Severa/genética , Linfócitos T/fisiologia , Agamaglobulinemia , Animais , Diferenciação Celular/genética , Modelos Animais de Doenças , Humanos , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Interferon alfa e beta/genética
3.
Immun Inflamm Dis ; 3(3): 265-79, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26417441

RESUMO

Systemic Lupus Erythematosus (SLE) is a severe systemic autoimmune disease, characterized by multi-organ damages, triggered by an autoantibody-mediated inflammation, and with a complex genetic influence. It is today accepted that adult SLE arises from the building up of many subtle gene variations, each one adding a new brick on the SLE susceptibility and contributing to a phenotypic trait to the disease. One of the ways to find these gene variations consists in comprehensive analysis of gene expression variation in a precise cell type, which can constitute a good complementary strategy to genome wide association studies. Using this strategy, and considering the central role of B cells in SLE, we analyzed the B cell transcriptome of quiescent SLE patients, and identified an overexpression of FKBP11, coding for a cytoplasmic putative peptidyl-prolyl cis/trans isomerase and chaperone enzyme. To understand the consequences of FKBP11 overexpression on B cell function and on autoimmunity's development, we created lentiviral transgenic mice reproducing this gene expression variation. We showed that high expression of Fkbp11 reproduces by itself two phenotypic traits of SLE in mice: breakdown of B cell tolerance against DNA and initiation of plasma cell differentiation by acting upstream of Pax5 master regulator gene.

4.
Shock ; 41(2): 166-71, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24300830

RESUMO

Acute myocardial infarction is a leading cause of mortality and morbidity worldwide. Although essential for successful recovery, myocardium reperfusion is associated with reperfusion injury. Two major cell survival signaling cascades are known to be protective against ischemia-reperfusion (I/R) injury: the reperfusion injury salvage kinase, including Akt, extracellular signal-regulated kinase 1/2, and the downstream target GSK-3ß, and the survivor activating factor enhancement, which involves STAT-3. Pharmacologic inhibition of factor Xa has been shown to attenuate I/R injury, but the cellular mechanism is poorly understood. Our aim was to determine the role of whole blood in fondaparinux (FDX)-induced cardioprotection and the involvement of reperfusion injury salvage kinase and survivor activating factor enhancement pathways. We investigated FDX ability to prevent in vivo I/R injury using a transient coronary ligation rat model and ex vivo using a model of crystalloid-perfused isolated rat heart. In both models, infarct size was assessed after 120 min of reperfusion. Myocardial tissues were collected after 15 and 30 min of reperfusion for Western blot analysis. In vivo, FDX decreased infarct size by 29% and induced significant STAT-3 and GSK-3ß phosphorylation in comparison to controls. Adding AG490, an inhibitor of JAK/STAT pathway, before I/R, prevented STAT-3 phosphorylation and abolished FDX-induced cardioprotection. On the contrary, FDX did not have an effect on infarct size or hemodynamic parameters in the isolated-heart model. Fondaparinux decreased I/R injury in vivo, but not in a crystalloid-perfused isolated heart. Under our experimental conditions, FDX required whole blood to be protective, and this beneficial effect was mediated through STAT-3 phosphorylation.


Assuntos
Traumatismo por Reperfusão Miocárdica/prevenção & controle , Polissacarídeos/uso terapêutico , Fator de Transcrição STAT3/fisiologia , Animais , Cardiotônicos/uso terapêutico , Fondaparinux , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Técnicas In Vitro , Masculino , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Ratos , Fator de Transcrição STAT3/antagonistas & inibidores , Tirfostinas/farmacologia
5.
PLoS One ; 8(10): e77211, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155931

RESUMO

BACKGROUND: Remote ischemic preconditioning (RIPC) has emerged as an attractive strategy in clinical settings. Despite convincing evidence of the critical role played by circulating humoral mediators, their actual identities remain unknown. In this study, we aimed to identify RIPC-induced humoral mediators using a proteomic approach. METHODS: and Results Rats were exposed to 10-min limb ischemia followed by 5- (RIPC 5') or 10-min (RIPC 10') reperfusion prior to blood sampling. The control group only underwent blood sampling. Plasma samples were analyzed using surface-enhanced laser desorption and ionization - time of flight - mass spectrometry (SELDI-TOF-MS). Three protein peaks were selected for their significant increase in RIPC 10'. They were identified and confirmed as apolipoprotein A-I (ApoA-I). Additional rats were exposed to myocardial ischemia-reperfusion (I/R) and assigned to one of the following groups RIPC+myocardial infarction (MI) (10-min limb ischemia followed by 10-min reperfusion initiated 20 minutes prior to myocardial I/R), ApoA-I+MI (10 mg/kg ApoA-I injection 10 minutes before myocardial I/R), and MI (no further intervention). In comparison with untreated MI rats, RIPC reduced infarct size (52.2±3.7% in RIPC+MI vs. 64.9±2.6% in MI; p<0.05). Similarly, ApoA-I injection decreased infarct size (50.9±3.8%; p<0.05 vs. MI). CONCLUSIONS: RIPC was associated with a plasmatic increase in ApoA-I. Furthermore, ApoA-I injection before myocardial I/R recapitulated the cardioprotection offered by RIPC in rats. This data suggests that ApoA-I may be a protective blood-borne factor involved in the RIPC mechanism.


Assuntos
Apolipoproteína A-I/metabolismo , Precondicionamento Isquêmico , Animais , Cardiotônicos/metabolismo , Ensaio de Imunoadsorção Enzimática , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Proteômica , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Shock ; 39(5): 433-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23481493

RESUMO

Remote ischemic perconditioning (RIPer) and local ischemic postconditioning (IPost) are promising methods to decrease ischemia-reperfusion injury. We tested whether these two methods were effective in reducing infarct size through activation of endoplasmic reticulum (ER) stress response, a potential survival pathway. Rats exposed to myocardial ischemia-reperfusion were allocated to one of six groups: control, no intervention at myocardial reperfusion; IPost, three cycles of 10-s coronary artery occlusion followed by 10-s reperfusion applied at the onset of myocardial reperfusion; RIPer, 10-min limb ischemia followed by 10-min reperfusion initiated during coronary artery occlusion; control + 4-PBA, injection of ER stress inhibitor 4-phenylbutyrate (4-PBA) 1 h before coronary occlusion; IPost + 4-PBA; and RIPer + 4-PBA. Infarct size was significantly reduced in IPost and RIPer groups (33.32% ± 3.65% and 21.86% ± 3.98%, respectively) compared with the control group (54.86% ± 6.01%, P < 0.05). Western blot analysis of GRP78 (glucose-regulated protein) level and cleaved activating transcription factor 6, two ER stress markers, demonstrated an enhancement of ER stress response in IPost group but not in RIPer group at 15-min reperfusion. Furthermore, 4-PBA abolished cardioprotection induced by IPost (infarct size 53.75 ± 3.49 vs. 33.32 ± 3.65%, P < 0.05) but not by RIPer (28.80 ± 10.45% vs. 21.86 ± 3.98%, not statistically significant). GRP78 and cleaved activating transcription factor 6 levels were no longer increased in IPost group after 4-PBA. These findings point to a role for ER stress response in cardioprotection against reperfusion injury in IPost but not RIPer, suggesting differences in cardioprotective mechanisms between local and remote conditioning.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Animais , Western Blotting , Estresse do Retículo Endoplasmático/genética , Precondicionamento Isquêmico Miocárdico , Masculino , Infarto do Miocárdio/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...