Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
R Soc Open Sci ; 11(1): 230903, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38179079

RESUMO

Killer whales are apex predators with temporally and spatially varying distributions throughout the world's oceans. Their ecology and behaviour are poorly understood in most regions due to limited research, often because of logistical challenges. Here, we used a passive acoustic monitoring device to investigate the seasonal acoustic occurrence and diel vocalizing behaviour of killer whales around the remote sub-Antarctic Prince Edward Islands (PEIs), Southern Ocean. Killer whales showed diel vocalizing patterns that varied seasonally in relation to their prey abundance and social activities. Killer whale calls were intermittently detected year-round with a high number of hours containing calls in October to December, and a secondary peak in February to May, corresponding to seal prey abundance. Random forest modelling identified wind speed as the primary predictor of the occurrence of killer whale calls (with a negative correlation) while sea surface height, chlorophyll-a and sea surface temperature were moderately important. We provide the first acoustic evidence that killer whale occurrence around the PEIs might coincide with variability in environmental conditions and prey abundance. Our results provide the first indication of diel vocalizing pattern of killer whales in the Southern Ocean. This knowledge is important for understanding killer whale ecology and adaptation to the changing oceans.

2.
Nat Commun ; 14(1): 2582, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142574

RESUMO

Eastern Boundary Upwelling Systems (EBUS) are highly productive ecosystems. However, being poorly sampled and represented in global models, their role as atmospheric CO2 sources and sinks remains elusive. In this work, we present a compilation of shipboard measurements over the past two decades from the Benguela Upwelling System (BUS) in the southeast Atlantic Ocean. Here, the warming effect of upwelled waters increases CO2 partial pressure (pCO2) and outgassing in the entire system, but is exceeded in the south through biologically-mediated CO2 uptake through biologically unused, so-called preformed nutrients supplied from the Southern Ocean. Vice versa, inefficient nutrient utilization leads to preformed nutrient formation, increasing pCO2 and counteracting human-induced CO2 invasion in the Southern Ocean. However, preformed nutrient utilization in the BUS compensates with ~22-75 Tg C year-1 for 20-68% of estimated natural CO2 outgassing in the Southern Ocean's Atlantic sector (~ 110 Tg C year-1), implying the need to better resolve global change impacts on the BUS to understand the ocean's role as future sink for anthropogenic CO2.

3.
Sci Adv ; 7(38): eabf4514, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34524856

RESUMO

The KwaZulu-Natal sardine run, popularly known as the "greatest shoal on Earth," is a mass migration of South African sardines from their temperate core range into the subtropical Indian Ocean. It has been suggested that this represents the spawning migration of a distinct subtropical stock. Using genomic and transcriptomic data from sardines collected around the South African coast, we identified two stocks, one cool temperate (Atlantic) and the other warm temperate (Indian Ocean). Unexpectedly, we found that sardines participating in the sardine run are primarily of Atlantic origin and thus prefer colder water. These sardines separate from the warm-temperate stock and move into temporarily favorable Indian Ocean habitat during brief cold-water upwelling periods. Once the upwelling ends, they find themselves trapped in physiologically challenging subtropical habitat and subject to intense predation pressure. This makes the sardine run a rare example of a mass migration that has no apparent fitness benefits.

4.
Curr Biol ; 27(4): 563-568, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28190725

RESUMO

Climate change and fisheries are transforming the oceans, but we lack a complete understanding of their ecological impact [1-3]. Environmental degradation can cause maladaptive habitat selection, inducing ecological traps with profound consequences for biodiversity [4-6]. However, whether ecological traps operate in marine systems is unclear [7]. Large marine vertebrates may be vulnerable to ecological traps [6], but their broad-scale movements and complex life histories obscure the population-level consequences of habitat selection [8, 9]. We satellite tracked postnatal dispersal in African penguins (Spheniscus demersus) from eight sites across their breeding range to test whether they have become ecologically trapped in the degraded Benguela ecosystem. Bayesian state-space and habitat models show that penguins traversed thousands of square kilometers to areas of low sea surface temperatures (14.5°C-17.5°C) and high chlorophyll-a (∼11 mg m-3). These were once reliable cues for prey-rich waters, but climate change and industrial fishing have depleted forage fish stocks in this system [10, 11]. Juvenile penguin survival is low in populations selecting degraded areas, and Bayesian projection models suggest that breeding numbers are ∼50% lower than if non-impacted habitats were used, revealing the extent and effect of a marine ecological trap for the first time. These cascading impacts of localized forage fish depletion-unobserved in studies on adults-were only elucidated via broad-scale movement and demographic data on juveniles. Our results support suspending fishing when prey biomass drops below critical thresholds [12, 13] and suggest that mitigation of marine ecological traps will require matching conservation action to the scale of ecological processes [14].


Assuntos
Distribuição Animal , Conservação dos Recursos Naturais , Comportamento Alimentar , Pesqueiros , Spheniscidae/fisiologia , Fatores Etários , Animais , Ecossistema , Namíbia , África do Sul
5.
PLoS One ; 11(5): e0152370, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27163373

RESUMO

Foraging behaviour of marine top predators is increasingly being used to identify areas of ecological importance. This is largely enabled by the ability of many such species to forage extensively in search of prey that is often concentrated in oceanographically productive areas. To identify important habitat in the Southern Indian Ocean within and around South Africa's Prince Edward Islands' Marine Protected Area (MPA), satellite transmitters were deployed on 12 lactating Subantarctic fur seals Arctocephalus tropicalis at Prince Edward Island (PEI) itself. Switching state space models were employed to correct ARGOS tracks and estimate behavioural states for locations along predicted tracks, namely travelling or area restricted search (ARS). A random forest model showed that distance from the study colony, longitude and distance from the Subantarctic Front were the most important predictors of suitable foraging habitat (inferred from ARS). Model-predicted suitable habitat occurred within the MPA in relatively close access to the colony during summer and autumn, but shifted northwards concurrently with frontal movements in winter and spring. The association of ARS with the MPA during summer-autumn was highly significant, highlighting the effectiveness of the recently declared reserve's design for capturing suitable foraging habitat for this and probably other marine top predator species.


Assuntos
Ecossistema , Otárias/fisiologia , Lactação , Comportamento Predatório , Animais , Feminino , Oceano Índico , Modelos Teóricos , Estações do Ano , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...