Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 6(3)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975972

RESUMO

Legume plants can form root organs called nodules where they house intracellular symbiotic rhizobium bacteria. Within nodule cells, rhizobia differentiate into bacteroids, which fix nitrogen for the benefit of the plant. Depending on the combination of host plants and rhizobial strains, the output of rhizobium-legume interactions varies from nonfixing associations to symbioses that are highly beneficial for the plant. Bradyrhizobium diazoefficiens USDA110 was isolated as a soybean symbiont, but it can also establish a functional symbiotic interaction with Aeschynomene afraspera In contrast to soybean, A. afraspera triggers terminal bacteroid differentiation, a process involving bacterial cell elongation, polyploidy, and increased membrane permeability, leading to a loss of bacterial viability while plants increase their symbiotic benefit. A combination of plant metabolomics, bacterial proteomics, and transcriptomics along with cytological analyses were used to study the physiology of USDA110 bacteroids in these two host plants. We show that USDA110 establishes a poorly efficient symbiosis with A. afraspera despite the full activation of the bacterial symbiotic program. We found molecular signatures of high levels of stress in A. afraspera bacteroids, whereas those of terminal bacteroid differentiation were only partially activated. Finally, we show that in A. afraspera, USDA110 bacteroids undergo atypical terminal differentiation hallmarked by the disconnection of the canonical features of this process. This study pinpoints how a rhizobium strain can adapt its physiology to a new host and cope with terminal differentiation when it did not coevolve with such a host.IMPORTANCE Legume-rhizobium symbiosis is a major ecological process in the nitrogen cycle, responsible for the main input of fixed nitrogen into the biosphere. The efficiency of this symbiosis relies on the coevolution of the partners. Some, but not all, legume plants optimize their return on investment in the symbiosis by imposing on their microsymbionts a terminal differentiation program that increases their symbiotic efficiency but imposes a high level of stress and drastically reduces their viability. We combined multi-omics with physiological analyses to show that the symbiotic couple formed by Bradyrhizobium diazoefficiens USDA110 and Aeschynomene afraspera, in which the host and symbiont did not evolve together, is functional but displays a low symbiotic efficiency associated with a disconnection of terminal bacteroid differentiation features.

2.
J Bacteriol ; 201(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31182497

RESUMO

Soil bacteria called rhizobia trigger the formation of root nodules on legume plants. The rhizobia infect these symbiotic organs and adopt an intracellular lifestyle within the nodule cells, where they differentiate into nitrogen-fixing bacteroids. Several legume lineages force their symbionts into an extreme cellular differentiation, comprising cell enlargement and genome endoreduplication. The antimicrobial peptide transporter BclA is a major determinant of this process in Bradyrhizobium sp. strain ORS285, a symbiont of Aeschynomene spp. In the absence of BclA, the bacteria proceed until the intracellular infection of nodule cells, but they cannot differentiate into enlarged polyploid and functional bacteroids. Thus, the bclA nodule bacteria constitute an intermediate stage between the free-living soil bacteria and the nitrogen-fixing bacteroids. Metabolomics on whole nodules of Aeschynomene afraspera and Aeschynomene indica infected with the wild type or the bclA mutant revealed 47 metabolites that differentially accumulated concomitantly with bacteroid differentiation. Bacterial transcriptome analysis of these nodules demonstrated that the intracellular settling of the rhizobia in the symbiotic nodule cells is accompanied by a first transcriptome switch involving several hundred upregulated and downregulated genes and a second switch accompanying the bacteroid differentiation, involving fewer genes but ones that are expressed to extremely elevated levels. The transcriptomes further suggested a dynamic role for oxygen and redox regulation of gene expression during nodule formation and a nonsymbiotic function of BclA. Together, our data uncover the metabolic and gene expression changes that accompany the transition from intracellular bacteria into differentiated nitrogen-fixing bacteroids.IMPORTANCE Legume-rhizobium symbiosis is a major ecological process, fueling the biogeochemical nitrogen cycle with reduced nitrogen. It also represents a promising strategy to reduce the use of chemical nitrogen fertilizers in agriculture, thereby improving its sustainability. This interaction leads to the intracellular accommodation of rhizobia within plant cells of symbiotic organs, where they differentiate into nitrogen-fixing bacteroids. In specific legume clades, this differentiation process requires the bacterial transporter BclA to counteract antimicrobial peptides produced by the host. Transcriptome analysis of Bradyrhizobium wild-type and bclA mutant bacteria in culture and in symbiosis with Aeschynomene host plants dissected the bacterial transcriptional response in distinct phases and highlighted functions of the transporter in the free-living stage of the bacterial life cycle.


Assuntos
Bradyrhizobium/metabolismo , Fabaceae/microbiologia , Metaboloma , Nódulos Radiculares de Plantas/microbiologia , Transcriptoma , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Fixação de Nitrogênio
3.
Front Plant Sci ; 10: 377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001301

RESUMO

The legume-rhizobium symbiosis is a major supplier of fixed nitrogen in the biosphere and constitutes a key step of the nitrogen biogeochemical cycle. In some legume species belonging to the Inverted Repeat Lacking Clade (IRLC) and the Dalbergioids, the differentiation of rhizobia into intracellular nitrogen-fixing bacteroids is terminal and involves pronounced cell enlargement and genome endoreduplication, in addition to a strong loss of viability. In the Medicago truncatula-Sinorhizobium spp. system, the extent of bacteroid differentiation correlates with the level of symbiotic efficiency. Here, we used different physiological measurements to compare the symbiotic efficiency of photosynthetic bradyrhizobia in different Aeschynomene spp. (Dalbergioids) hosts inducing different bacteroid morphotypes associated with increasing ploidy levels. The strongly differentiated spherical bacteroids were more efficient than the less strongly differentiated elongated ones, providing a higher mass gain to their hosts. However, symbiotic efficiency is not solely correlated with the extent of bacteroid differentiation especially in spherical bacteroid-inducing plants, suggesting the existence of other factors controlling symbiotic efficiency.

4.
ISME J ; 13(6): 1469-1483, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742016

RESUMO

In the symbiosis of the bean bug Riptortus pedestris with Burkholderia insecticola, the bacteria occupy an exclusive niche in the insect midgut and favor insect development and reproduction. In order to understand how the symbiotic bacteria stably colonize the midgut crypts and which services they provide to the host, we compared the cytology, physiology, and transcriptomics of free-living and midgut-colonizing B. insecticola. The analyses revealed that midgut-colonizing bacteria were smaller in size and had lower DNA content, they had increased stress sensitivity, lost motility, and an altered cell surface. Transcriptomics revealed what kinds of nutrients are provided by the bean bug to the Burkholderia symbiont. Transporters and metabolic pathways of diverse sugars such as rhamnose and ribose, and sulfur compounds like sulfate and taurine were upregulated in the midgut-colonizing symbionts. Moreover, pathways enabling the assimilation of insect nitrogen wastes, i.e. allantoin and urea, were also upregulated. The data further suggested that the midgut-colonizing symbionts produced all essential amino acids and B vitamins, some of which are scarce in the soybean food of the host insect. Together, these findings suggest that the Burkholderia symbiont is fed with specific nutrients and also recycles host metabolic wastes in the insect gut, and in return, the bacterial symbiont provides the host with essential nutrients limited in the insect food, contributing to the rapid growth and enhanced reproduction of the bean bug host.


Assuntos
Proteínas de Bactérias/genética , Burkholderia/fisiologia , Heterópteros/microbiologia , Animais , Proteínas de Bactérias/metabolismo , Burkholderia/classificação , Burkholderia/genética , Burkholderia/isolamento & purificação , Meios de Cultura/metabolismo , Trato Gastrointestinal/microbiologia , Heterópteros/crescimento & desenvolvimento , Heterópteros/fisiologia , Simbiose/fisiologia , Transcriptoma
5.
New Phytol ; 222(1): 455-467, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30447163

RESUMO

Agrobacterium tumefaciens is a niche-constructing biotroph that exploits host plant metabolites. We combined metabolomics, transposon-sequencing (Tn-seq), transcriptomics, and reverse genetics to characterize A. tumefaciens pathways involved in the exploitation of resources from the Solanum lycopersicum host plant. Metabolomics of healthy stems and plant tumors revealed the common (e.g. sucrose, glutamate) and enriched (e.g. opines, γ-aminobutyric acid (GABA), γ-hydroxybutyric acid (GHB), pyruvate) metabolites that A. tumefaciens could use as nutrients. Tn-seq and transcriptomics pinpointed the genes that are crucial and/or upregulated when the pathogen grew on either sucrose (pgi, kdgA, pycA, cisY) or GHB (blcAB, pckA, eno, gpsA) as a carbon source. While sucrose assimilation involved the Entner-Doudoroff and tricarboxylic acid (TCA) pathways, GHB degradation required the blc genes, TCA cycle, and gluconeogenesis. The tumor-enriched metabolite pyruvate is at the node connecting these pathways. Using reverse genetics, we showed that the blc, pckA, and pycA loci were important for aggressiveness (tumor weight), proliferation (bacterial charge), and/or fitness (competition between the constructed mutants and wild-type) of A. tumefaciens in plant tumors. This work highlighted how a biotroph mobilizes its central metabolism for exploiting a wide diversity of resources in a plant host. It further shows the complementarity of functional genome-wide scans by transcriptomics and Tn-seq to decipher the lifestyle of a plant pathogen.


Assuntos
Agrobacterium tumefaciens/fisiologia , Interações Hospedeiro-Patógeno , Metaboloma , Tumores de Planta/microbiologia , Agrobacterium tumefaciens/efeitos dos fármacos , Agrobacterium tumefaciens/genética , Carbono/farmacologia , Elementos de DNA Transponíveis/genética , Biblioteca Gênica , Genes Bacterianos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Hidroxibutiratos/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Mutação/genética , Nitrogênio/farmacologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Sacarose/metabolismo , Transcriptoma/genética , Ácido gama-Aminobutírico/metabolismo
6.
Environ Microbiol ; 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921018

RESUMO

To circumvent the paucity of nitrogen sources in the soil legume plants establish a symbiotic interaction with nitrogen-fixing soil bacteria called rhizobia. During symbiosis, the plants form root organs called nodules, where bacteria are housed intracellularly and become active nitrogen fixers known as bacteroids. Depending on their host plant, bacteroids can adopt different morphotypes, being either unmodified (U), elongated (E) or spherical (S). E- and S-type bacteroids undergo a terminal differentiation leading to irreversible morphological changes and DNA endoreduplication. Previous studies suggest that differentiated bacteroids display an increased symbiotic efficiency (E > U and S > U). In this study, we used a combination of Aeschynomene species inducing E- or S-type bacteroids in symbiosis with Bradyrhizobium sp. ORS285 to show that S-type bacteroids present a better symbiotic efficiency than E-type bacteroids. We performed a transcriptomic analysis on E- and S-type bacteroids formed by Aeschynomene afraspera and Aeschynomene indica nodules and identified the bacterial functions activated in bacteroids and specific to each bacteroid type. Extending the expression analysis in E- and S-type bacteroids in other Aeschynomene species by qRT-PCR on selected genes from the transcriptome analysis narrowed down the set of bacteroid morphotype-specific genes. Functional analysis of a selected subset of 31 bacteroid-induced or morphotype-specific genes revealed no symbiotic phenotypes in the mutants. This highlights the robustness of the symbiotic program but could also indicate that the bacterial response to the plant environment is partially anticipatory or even maladaptive. Our analysis confirms the correlation between differentiation and efficiency of the bacteroids and provides a framework for the identification of bacterial functions that affect the efficiency of bacteroids.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

7.
Sci Rep ; 7(1): 9063, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831061

RESUMO

Legumes harbor in their symbiotic nodule organs nitrogen fixing rhizobium bacteria called bacteroids. Some legumes produce Nodule-specific Cysteine-Rich (NCR) peptides in the nodule cells to control the intracellular bacterial population. NCR peptides have antimicrobial activity and drive bacteroids toward terminal differentiation. Other legumes do not produce NCR peptides and their bacteroids are not differentiated. Bradyrhizobia, infecting NCR-producing Aeschynomene plants, require the peptide uptake transporter BclA to cope with the NCR peptides as well as a specific peptidoglycan-modifying DD-carboxypeptidase, DD-CPase1. We show that Bradyrhizobium diazoefficiens strain USDA110 forms undifferentiated bacteroids in NCR-lacking soybean nodules. Unexpectedly, in Aeschynomene afraspera nodules the nitrogen fixing USDA110 bacteroids are hardly differentiated despite the fact that this host produces NCR peptides, suggesting that USDA110 is insensitive to the host peptide effectors and that nitrogen fixation can be uncoupled from differentiation. In agreement with the absence of bacteroid differentiation, USDA110 does not require its bclA gene for nitrogen fixing symbiosis with these two host plants. Furthermore, we show that the BclA and DD-CPase1 act independently in the NCR-induced morphological differentiation of bacteroids. Our results suggest that BclA is required to protect the rhizobia against the NCR stress but not to induce the terminal differentiation pathway.


Assuntos
Bradyrhizobium/genética , Carboxipeptidases/genética , Glicoproteínas de Membrana/genética , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Bradyrhizobium/metabolismo , Carboxipeptidases/metabolismo , Glicoproteínas de Membrana/metabolismo , Fenótipo , Simbiose
8.
Mol Plant Microbe Interact ; 30(5): 399-409, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28437159

RESUMO

Legume plants interact with rhizobia to form nitrogen-fixing root nodules. Legume-rhizobium interactions are specific and only compatible rhizobia and plant species will lead to nodule formation. Even within compatible interactions, the genotype of both the plant and the bacterial symbiont will impact on the efficiency of nodule functioning and nitrogen-fixation activity. The model legume Medicago truncatula forms nodules with several species of the Sinorhizobium genus. However, the efficiency of these bacterial strains is highly variable. In this study, we compared the symbiotic efficiency of Sinorhizobium meliloti strains Sm1021, 102F34, and FSM-MA, and Sinorhizobium medicae strain WSM419 on the two widely used M. truncatula accessions A17 and R108. The efficiency of the interactions was determined by multiple parameters. We found a high effectiveness of the FSM-MA strain with both M. truncatula accessions. In contrast, specific highly efficient interactions were obtained for the A17-WSM419 and R108-102F34 combinations. Remarkably, the widely used Sm1021 strain performed weakly on both hosts. We showed that Sm1021 efficiently induced nodule organogenesis but cannot fully activate the differentiation of the symbiotic nodule cells, explaining its weaker performance. These results will be informative for the selection of appropriate rhizobium strains in functional studies on symbiosis using these M. truncatula accessions, particularly for research focusing on late stages of the nodulation process.


Assuntos
Ecótipo , Medicago truncatula/microbiologia , Sinorhizobium/fisiologia , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Cinética , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Fixação de Nitrogênio , Fenótipo , Ploidias , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...