Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(12): 11794-11804, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37317984

RESUMO

Hybrid semiconductor-superconductor nanowires constitute a pervasive platform for studying gate-tunable superconductivity and the emergence of topological behavior. Their low dimensionality and crystal structure flexibility facilitate unique heterostructure growth and efficient material optimization, crucial prerequisites for accurately constructing complex multicomponent quantum materials. Here, we present an extensive study of Sn growth on InSb, InAsSb, and InAs nanowires and demonstrate how the crystal structure of the nanowires drives the formation of either semimetallic α-Sn or superconducting ß-Sn. For InAs nanowires, we observe phase-pure superconducting ß-Sn shells. However, for InSb and InAsSb nanowires, an initial epitaxial α-Sn phase evolves into a polycrystalline shell of coexisting α and ß phases, where the ß/α volume ratio increases with Sn shell thickness. Whether these nanowires exhibit superconductivity or not critically relies on the ß-Sn content. Therefore, this work provides key insights into Sn phases on a variety of semiconductors with consequences for the yield of superconducting hybrids suitable for generating topological systems.

2.
ACS Nano ; 14(11): 14605-14615, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-32396328

RESUMO

Gate-tunable junctions are key elements in quantum devices based on hybrid semiconductor-superconductor materials. They serve multiple purposes ranging from tunnel spectroscopy probes to voltage-controlled qubit operations in gatemon and topological qubits. Common to all is that junction transparency plays a critical role. In this study, we grow single-crystalline InAs, InSb, and InAs1-xSbx semiconductor nanowires with epitaxial Al, Sn, and Pb superconductors and in situ shadowed junctions in a single-step molecular beam epitaxy process. We investigate correlations between fabrication parameters, junction morphologies, and electronic transport properties of the junctions and show that the examined in situ shadowed junctions are of significantly higher quality than the etched junctions. By varying the edge sharpness of the shadow junctions, we show that the sharpest edges yield the highest junction transparency for all three examined semiconductors. Further, critical supercurrent measurements reveal an extraordinarily high ICRN, close to the KO-2 limit. This study demonstrates a promising engineering path toward reliable gate-tunable superconducting qubits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA