Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Elife ; 122024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747258

RESUMO

In most mammals, conspecific chemosensory communication relies on semiochemical release within complex bodily secretions and subsequent stimulus detection by the vomeronasal organ (VNO). Urine, a rich source of ethologically relevant chemosignals, conveys detailed information about sex, social hierarchy, health, and reproductive state, which becomes accessible to a conspecific via vomeronasal sampling. So far, however, numerous aspects of social chemosignaling along the vomeronasal pathway remain unclear. Moreover, since virtually all research on vomeronasal physiology is based on secretions derived from inbred laboratory mice, it remains uncertain whether such stimuli provide a true representation of potentially more relevant cues found in the wild. Here, we combine a robust low-noise VNO activity assay with comparative molecular profiling of sex- and strain-specific mouse urine samples from two inbred laboratory strains as well as from wild mice. With comprehensive molecular portraits of these secretions, VNO activity analysis now enables us to (i) assess whether and, if so, how much sex/strain-selective 'raw' chemical information in urine is accessible via vomeronasal sampling; (ii) identify which chemicals exhibit sufficient discriminatory power to signal an animal's sex, strain, or both; (iii) determine the extent to which wild mouse secretions are unique; and (iv) analyze whether vomeronasal response profiles differ between strains. We report both sex- and, in particular, strain-selective VNO representations of chemical information. Within the urinary 'secretome', both volatile compounds and proteins exhibit sufficient discriminative power to provide sex- and strain-specific molecular fingerprints. While total protein amount is substantially enriched in male urine, females secrete a larger variety at overall comparatively low concentrations. Surprisingly, the molecular spectrum of wild mouse urine does not dramatically exceed that of inbred strains. Finally, vomeronasal response profiles differ between C57BL/6 and BALB/c animals, with particularly disparate representations of female semiochemicals.


Assuntos
Órgão Vomeronasal , Animais , Órgão Vomeronasal/fisiologia , Camundongos , Masculino , Feminino , Odorantes/análise , Feromônios/urina , Feromônios/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos
2.
Stem Cell Res Ther ; 15(1): 99, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581069

RESUMO

BACKGROUND: Human induced pluripotent stem cell (iPSC)-derived peripheral sensory neurons present a valuable tool to model human diseases and are a source for applications in drug discovery and regenerative medicine. Clinically, peripheral sensory neuropathies can result in maladies ranging from a complete loss of pain to severe painful neuropathic disorders. Sensory neurons are located in the dorsal root ganglion and are comprised of functionally diverse neuronal types. Low efficiency, reproducibility concerns, variations arising due to genetic factors and time needed to generate functionally mature neuronal populations from iPSCs remain key challenges to study human nociception in vitro. Here, we report a detailed functional characterization of iPSC-derived sensory neurons with an accelerated differentiation protocol ("Anatomic" protocol) compared to the most commonly used small molecule approach ("Chambers" protocol). Anatomic's commercially available RealDRG™ were further characterized for both functional and expression phenotyping of key nociceptor markers. METHODS: Multiple iPSC clones derived from different reprogramming methods, genetics, age, and somatic cell sources were used to generate sensory neurons. Manual patch clamp was used to functionally characterize both control and patient-derived neurons. High throughput techniques were further used to demonstrate that RealDRGs™ derived from the Anatomic protocol are amenable to high throughput technologies for disease modelling. RESULTS: The Anatomic protocol rendered a purer culture without the use of mitomycin C to suppress non-neuronal outgrowth, while Chambers differentiations yielded a mix of cell types. Chambers protocol results in predominantly tonic firing when compared to Anatomic protocol. Patient-derived nociceptors displayed higher frequency firing compared to control subject with both, Chambers and Anatomic differentiation approaches, underlining their potential use for clinical phenotyping as a disease-in-a-dish model. RealDRG™ sensory neurons show heterogeneity of nociceptive markers indicating that the cells may be useful as a humanized model system for translational studies. CONCLUSIONS: We validated the efficiency of two differentiation protocols and their potential application for functional assessment and thus understanding the disease mechanisms from patients suffering from pain disorders. We propose that both differentiation methods can be further exploited for understanding mechanisms and development of novel treatments in pain disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Reprodutibilidade dos Testes , Células Receptoras Sensoriais/metabolismo , Dor/metabolismo , Diferenciação Celular/fisiologia
3.
Sci Rep ; 14(1): 8471, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605132

RESUMO

Self-identification as a victim of violence may lead to increased negative emotions and stress and thus, may change both structure and function of the underlying neural network(s). In a trans-diagnostic sample of individuals who identified themselves as victims of violence and a matched control group with no prior exposure to violence, we employed a social exclusion paradigm, the Cyberball task, to stimulate the re-experience of stress. Participants were partially excluded in the ball-tossing game without prior knowledge. We analyzed group differences in brain activity and functional connectivity during exclusion versus inclusion in exclusion-related regions. The victim group showed increased anger and stress levels during all conditions. Activation patterns during the task did not differ between groups but an enhanced functional connectivity between the IFG and the right vmPFC distinguished victims from controls during exclusion. This effect was driven by aberrant connectivity in victims during inclusion rather than exclusion, indicating that victimization affects emotional responses and inclusion-related brain connectivity rather than exclusion-related brain activity or connectivity. Victims may respond differently to the social context itself. Enhanced negative emotions and connectivity deviations during social inclusion may depict altered social processing and may thus affect social interactions.


Assuntos
Ira , Interação Social , Humanos , Ira/fisiologia , Emoções/fisiologia , Encéfalo/fisiologia , Isolamento Social/psicologia
4.
Neuropharmacology ; 253: 109967, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38657946

RESUMO

Botulinum neurotoxin type A BoNT/A is used off-label as a third line therapy for neuropathic pain. However, the mechanism of action remains unclear. In recent years, the role of voltage-gated sodium channels (Nav) in neuropathic pain became evident and it was suggested that block of sodium channels by BoNT/A would contribute to its analgesic effect. We assessed sodium channel function in the presence of BoNT/A in heterologously expressed Nav1.7, Nav1.3, and the neuronal cell line ND7/23 by high throughput automated and manual patch-clamp. We used both the full protein and the isolated catalytic light chain LC/A for acute or long-term extracellular or intracellular exposure. To assess the toxin's effect in a human cellular system, we differentiated induced pluripotent stem cells (iPSC) into sensory neurons from a healthy control and a patient suffering from a hereditary neuropathic pain syndrome (inherited erythromelalgia) carrying the Nav1.7/p.Q875E-mutation and carried out multielectrode-array measurements. Both BoNT/A and the isolated catalytic light chain LC/A showed limited effects in heterologous expression systems and the neuronal cell line ND7/23. Spontaneous activity in iPSC derived sensory neurons remained unaltered upon BoNT/A exposure both in neurons from the healthy control and the mutation carrying patient. BoNT/A may not specifically be beneficial in pain syndromes linked to sodium channel variants. The favorable effects of BoNT/A in neuropathic pain are likely based on mechanisms other than sodium channel blockage and new approaches to understand BoNT/A's therapeutic effects are necessary.


Assuntos
Toxinas Botulínicas Tipo A , Células-Tronco Pluripotentes Induzidas , Canal de Sódio Disparado por Voltagem NAV1.7 , Neuralgia , Humanos , Neuralgia/tratamento farmacológico , Toxinas Botulínicas Tipo A/farmacologia , Toxinas Botulínicas Tipo A/uso terapêutico , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Analgésicos/farmacologia , Animais , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células HEK293 , Linhagem Celular
5.
Pflugers Arch ; 476(6): 975-992, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38538988

RESUMO

Human-induced pluripotent stem cells (iPS cells) are efficiently differentiated into sensory neurons. These cells express the voltage-gated sodium channel NaV1.7, which is a validated pain target. NaV1.7 deficiency leads to pain insensitivity, whereas NaV1.7 gain-of-function mutants are associated with chronic pain. During differentiation, the sensory neurons start spontaneous action potential firing around day 22, with increasing firing rate until day 40. Here, we used CRISPR/Cas9 genome editing to generate a HA-tag NaV1.7 to follow its expression during differentiation. We used two protocols to generate sensory neurons: the classical small molecule approach and a directed differentiation methodology and assessed surface NaV1.7 expression by Airyscan high-resolution microscopy. Our results show that maturation of at least 49 days is necessary to observe robust NaV1.7 surface expression in both protocols. Electric activity of the sensory neurons precedes NaV1.7 surface expression. A clinically effective NaV1.7 blocker is still missing, and we expect this iPS cell model system to be useful for drug discovery and disease modeling.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Canal de Sódio Disparado por Voltagem NAV1.7 , Células Receptoras Sensoriais , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Humanos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Potenciais de Ação , Sistemas CRISPR-Cas
6.
J Pain ; 25(6): 104457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38211845

RESUMO

Small-fiber neuropathy (SFN) is defined by degeneration or dysfunction of peripheral sensory nerve endings. Central correlates have been identified on the level of gray matter volume (GMV) and cortical thickness (CT) changes. However, across SFN etiologies knowledge about a common structural brain signature is still lacking. Therefore, we recruited 26 SFN patients and 25 age- and sex-matched healthy controls to conduct voxel-based- and surface-based morphometry. Across all patients, we found reduced GMV in widespread frontal regions, left caudate, insula and superior parietal lobule. Surface-based morphometry analysis revealed reduced CT in the right precentral gyrus of SFN patients. In a region-based approach, patients had reduced GMV in the left caudate. Since pathogenic gain-of-function variants in voltage-gated sodium channels (Nav) have been associated with SFN pathophysiology, we explored brain morphological patterns in a homogenous subsample of patients carrying rare heterozygous missense variants. Whole brain- and region-based approaches revealed GMV reductions in the bilateral caudate for Nav variant carriers. Further research is needed to analyze the specific role of Nav variants for structural brain alterations. Together, we conclude that SFN patients have specific GMV and CT alterations, potentially forming potential new central biomarkers for this condition. Our results might help to better understand underlying or compensatory mechanisms of chronic pain perception in the future. PERSPECTIVE: This study reveals structural brain changes in small-fiber neuropathy (SFN) patients, particularly in frontal regions, caudate, insula, and parietal lobule. Notably, individuals with SFN and specific Nav variants exhibit bilateral caudate abnormalities. These findings may serve as potential central biomarkers for SFN and provide insights into chronic pain perception mechanisms.


Assuntos
Substância Cinzenta , Neuropatia de Pequenas Fibras , Humanos , Masculino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Feminino , Pessoa de Meia-Idade , Neuropatia de Pequenas Fibras/patologia , Neuropatia de Pequenas Fibras/diagnóstico por imagem , Neuropatia de Pequenas Fibras/fisiopatologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Idoso , Imageamento por Ressonância Magnética , Espessura Cortical do Cérebro
7.
Front Comput Neurosci ; 17: 1265958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38156040

RESUMO

Objective: Patients with small fiber neuropathy (SFN) suffer from neuropathic pain, which is still a therapeutic problem. Changed activation patterns of mechano-insensitive peripheral nerve fibers (CMi) could cause neuropathic pain. However, there is sparse knowledge about mechanisms leading to CMi dysfunction since it is difficult to dissect specific molecular mechanisms in humans. We used an in-silico model to elucidate molecular causes of CMi dysfunction as observed in single nerve fiber recordings (microneurography) of SFN patients. Approach: We analyzed microneurography data from 97 CMi-fibers from healthy individuals and 34 of SFN patients to identify activity-dependent changes in conduction velocity. Using the NEURON environment, we adapted a biophysical realistic preexisting CMi-fiber model with ion channels described by Hodgkin-Huxley dynamics for identifying molecular mechanisms leading to those changes. Via a grid search optimization, we assessed the interplay between different ion channels, Na-K-pump, and resting membrane potential. Main results: Changing a single ion channel conductance, Na-K-pump or membrane potential individually is not sufficient to reproduce in-silico CMi-fiber dysfunction of unchanged activity-dependent conduction velocity slowing and quicker normalization of conduction velocity after stimulation as observed in microneurography. We identified the best combination of mechanisms: increased conductance of potassium delayed-rectifier and decreased conductance of Na-K-pump and depolarized membrane potential. When the membrane potential is unchanged, opposite changes in Na-K-pump and ion channels generate the same effect. Significance: Our study suggests that not one single mechanism accounts for pain-relevant changes in CMi-fibers, but a combination of mechanisms. A depolarized membrane potential, as previously observed in patients with neuropathic pain, leads to changes in the contribution of ion channels and the Na-K-pump. Thus, when searching for targets for the treatment of neuropathic pain, combinations of several molecules in interplay with the membrane potential should be regarded.

8.
Res Sq ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37961300

RESUMO

Background: Human induced pluripotent stem cell (iPSC)-derived peripheral sensory neurons present a valuable tool to model human diseases and are a source for applications in drug discovery and regenerative medicine. Clinically, peripheral sensory neuropathies can result in maladies ranging from a complete loss of pain to severe painful neuropathic symptoms. Sensory neurons are located in the dorsal root ganglion and are comprised of functionally diverse neuronal types. Low efficiency, reproducibility concerns, variations arising due to genetic factors and time needed to generate functionally mature neuronal populations from iPSCs for disease modelling remain key challenges to study human nociception in vitro. Here, we report a detailed characterization of iPSC-derived sensory neurons with an accelerated differentiation protocol ("Anatomic" protocol) compared to the most commonly used small molecule approach ("Chambers" protocol). Methods: Multiple iPSC clones derived from different reprogramming methods, genetics, age, and somatic cell sources were used to generate sensory neurons. Expression profiling of sensory neurons was performed with Immunocytochemistry and in situ hybridization techniques. Manual patch clamp and high throughput cellular screening systems (Fluorescence imaging plate reader, automated patch clamp and multi-well microelectrode arrays recordings) were applied to functionally characterize the generated sensory neurons. Results: The Anatomic protocol rendered a purer culture without the use of mitomycin C to suppress non-neuronal outgrowth, while Chambers differentiations yielded a mix of cell types. High throughput systems confirmed functional expression of Na+ and K+ ion channels. Multi-well microelectrode recordings display spontaneously active neurons with sensitivity to increased temperature indicating expression of heat sensitive ion channels. Patient-derived nociceptors displayed higher frequency firing compared to control subject with both, Chambers and Anatomic differentiation approaches, underlining their potential use for clinical phenotyping as a disease-in-a-dish model. Conclusions: We validated the efficiency of two differentiation protocols and their potential application for understanding the disease mechanisms from patients suffering from pain disorders. We propose that both differentiation methods can be further exploited for understanding mechanisms and development of novel treatments in pain disorders.

9.
J Gen Physiol ; 155(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37531097

RESUMO

Voltage-gated sodium channels (Nav) are key players in excitable tissues with the capability to generate and propagate action potentials. Mutations in the genes encoding Navs can lead to severe inherited diseases, and some of these so-called channelopathies show temperature-sensitive phenotypes, for example, paramyotonia congenita, Brugada syndrome, febrile seizure syndromes, and inherited pain syndromes like erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). Nevertheless, most investigations of mutation-induced gating effects have been conducted at room temperature, and thus the role of cooling or warming in channelopathies remains poorly understood. Here, we investigated the temperature sensitivity of four Nav subtypes: Nav1.3, Nav1.5, Nav1.6, and Nav1.7, and two mutations in Nav1.7 causing IEM (Nav1.7/L823R) and PEPD (Nav1.7/I1461T) expressed in cells of the human embryonic kidney cell line using an automated patch clamp system. Our experiments at 15°C, 25°C, and 35°C revealed a shift of the voltage dependence of activation to more hyperpolarized potentials with increasing temperature for all investigated subtypes. Nav1.3 exhibited strongly slowed inactivation kinetics compared with the other subtypes that resulted in enhanced persistent current, especially at 15°C, indicating a possible role in cold-induced hyperexcitability. Impaired fast inactivation of Nav1.7/I1461T was significantly enhanced by a cooling temperature of 15°C. The subtype-specific modulation as well as the intensified mutation-induced gating changes stress the importance to consider temperature as a regulator for channel gating and its impact on cellular excitability as well as disease phenotypes.


Assuntos
Canalopatias , Eritromelalgia , Humanos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor , Eritromelalgia/genética , Eritromelalgia/metabolismo , Mutação
10.
Adv Healthc Mater ; 12(20): e2301055, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37434349

RESUMO

Neural interfaces are evolving at a rapid pace owing to advances in material science and fabrication, reduced cost of scalable complementary metal oxide semiconductor (CMOS) technologies, and highly interdisciplinary teams of researchers and engineers that span a large range from basic to applied and clinical sciences. This study outlines currently established technologies, defined as instruments and biological study systems that are routinely used in neuroscientific research. After identifying the shortcomings of current technologies, such as a lack of biocompatibility, topological optimization, low bandwidth, and lack of transparency, it maps out promising directions along which progress should be made to achieve the next generation of symbiotic and intelligent neural interfaces. Lastly, it proposes novel applications that can be achieved by these developments, ranging from the understanding and reproduction of synaptic learning to live-long multimodal measurements to monitor and treat various neuronal disorders.


Assuntos
Neurônios , Semicondutores
12.
Adv Healthc Mater ; 12(20): e2301030, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37311209

RESUMO

Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.


Assuntos
Células-Tronco , Engenharia Tecidual , Humanos , Descoberta de Drogas , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis/farmacologia
14.
Front Pharmacol ; 14: 1120360, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007008

RESUMO

Introduction: The P2X3 receptor (P2X3R), an ATP-gated non-selective cation channel of the P2X receptor family, is expressed in sensory neurons and involved in nociception. P2X3R inhibition was shown to reduce chronic and neuropathic pain. In a previous screening of 2000 approved drugs, natural products, and bioactive substances, various non-steroidal anti-inflammatory drugs (NSAIDs) were found to inhibit P2X3R-mediated currents. Methods: To investigate whether the inhibition of P2X receptors contributes to the analgesic effect of NSAIDs, we characterized the potency and selectivity of various NSAIDs at P2X3R and other P2XR subtypes using two-electrode voltage clamp electrophysiology. Results: We identified diclofenac as a hP2X3R and hP2X2/3R antagonist with micromolar potency (with IC50 values of 138.2 and 76.7 µM, respectively). A weaker inhibition of hP2X1R, hP2X4R, and hP2X7R by diclofenac was determined. Flufenamic acid (FFA) inhibited hP2X3R, rP2X3R, and hP2X7R (IC50 values of 221 µM, 264.1 µM, and ∼900 µM, respectively), calling into question its use as a non-selective ion channel blocker, when P2XR-mediated currents are under study. Inhibition of hP2X3R or hP2X2/3R by diclofenac could be overcome by prolonged ATP application or increasing concentrations of the agonist α,ß-meATP, respectively, indicating competition of diclofenac and the agonists. Molecular dynamics simulation showed that diclofenac largely overlaps with ATP bound to the open state of the hP2X3R. Our results suggest a competitive antagonism through which diclofenac, by interacting with residues of the ATP-binding site, left flipper, and dorsal fin domains, inhibits the gating of P2X3R by conformational fixation of the left flipper and dorsal fin domains. In summary, we demonstrate the inhibition of the human P2X3 receptor by various NSAIDs. Diclofenac proved to be the most effective antagonist with a strong inhibition of hP2X3R and hP2X2/3R and a weaker inhibition of hP2X1R, hP2X4R, and hP2X7R. Discussion: Considering their involvement in nociception, inhibition of hP2X3R and hP2X2/3R by micromolar concentrations of diclofenac, which are rarely reached in the therapeutic range, may play a minor role in analgesia compared to the high-potency cyclooxygenase inhibition but may explain the known side effect of taste disturbances caused by diclofenac.

15.
Rev Neurosci ; 34(2): 223-245, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36084305

RESUMO

Previous fMRI research identified superior temporal sulcus as central integration area for audiovisual stimuli. However, less is known about a general multisensory integration network across senses. Therefore, we conducted activation likelihood estimation meta-analysis with multiple sensory modalities to identify a common brain network. We included 49 studies covering all Aristotelian senses i.e., auditory, visual, tactile, gustatory, and olfactory stimuli. Analysis revealed significant activation in bilateral superior temporal gyrus, middle temporal gyrus, thalamus, right insula, and left inferior frontal gyrus. We assume these regions to be part of a general multisensory integration network comprising different functional roles. Here, thalamus operate as first subcortical relay projecting sensory information to higher cortical integration centers in superior temporal gyrus/sulcus while conflict-processing brain regions as insula and inferior frontal gyrus facilitate integration of incongruent information. We additionally performed meta-analytic connectivity modelling and found each brain region showed co-activations within the identified multisensory integration network. Therefore, by including multiple sensory modalities in our meta-analysis the results may provide evidence for a common brain network that supports different functional roles for multisensory integration.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Sensação , Lobo Temporal , Imageamento por Ressonância Magnética
16.
Nat Rev Dis Primers ; 8(1): 41, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710757

RESUMO

Genetic pain loss includes congenital insensitivity to pain (CIP), hereditary sensory neuropathies and, if autonomic nerves are involved, hereditary sensory and autonomic neuropathy (HSAN). This heterogeneous group of disorders highlights the essential role of nociception in protecting against tissue damage. Patients with genetic pain loss have recurrent injuries, burns and poorly healing wounds as disease hallmarks. CIP and HSAN are caused by pathogenic genetic variants in >20 genes that lead to developmental defects, neurodegeneration or altered neuronal excitability of peripheral damage-sensing neurons. These genetic variants lead to hyperactivity of sodium channels, disturbed haem metabolism, altered clathrin-mediated transport and impaired gene regulatory mechanisms affecting epigenetic marks, long non-coding RNAs and repetitive elements. Therapies for pain loss disorders are mainly symptomatic but the first targeted therapies are being tested. Conversely, chronic pain remains one of the greatest unresolved medical challenges, and the genes and mechanisms associated with pain loss offer new targets for analgesics. Given the progress that has been made, the coming years are promising both in terms of targeted treatments for pain loss disorders and the development of innovative pain medicines based on knowledge of these genetic diseases.


Assuntos
Canalopatias , Neuropatias Hereditárias Sensoriais e Autônomas , Insensibilidade Congênita à Dor , Neuropatias Hereditárias Sensoriais e Autônomas/complicações , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Dor/genética , Insensibilidade Congênita à Dor/genética
17.
Methods Mol Biol ; 2429: 175-188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507161

RESUMO

Induced pluripotent stem cells (iPS-cells) have significantly expanded our experimental possibilities, by creating new strategies for the molecular study of human disease and drug development. Treatment of pain has not seen much improvement over the past decade, likely due to species differences in preclinical models. Thus, iPS-cell derived sensory neurons offer a highly welcome translational approach for research and drug development. Although central neuronal differentiation is relatively straightforward, the successful and reliable generation of peripheral neurons requires more complex measures. Here, we describe a small molecule-based protocol for the differentiation of human sensory neurons from iPS-cells which renders functional nociceptor-like cells within several weeks.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Humanos , Células Receptoras Sensoriais
18.
Front Pharmacol ; 13: 837088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418860

RESUMO

The long history of local anesthetics (LAs) starts out in the late 19th century when the content of coca plant leaves was discovered to alleviate pain. Soon after, cocaine was established and headed off to an infamous career as a substance causing addiction. Today, LAs and related substances-in modified form-are indispensable in our clinical everyday life for pain relief during and after minor and major surgery, and dental practices. In this review, we elucidate on the interaction of modern LAs with their main target, the voltage-gated sodium channel (Navs), in the light of the recently published channel structures. Knowledge of the 3D interaction sites of the drug with the protein will allow to mechanistically substantiate the comprehensive data available on LA gating modification. In the 1970s it was suggested that LAs can enter the channel pore from the lipid phase, which was quite prospective at that time. Today we know from cryo-electron microscopy structures and mutagenesis experiments, that indeed Navs have side fenestrations facing the membrane, which are likely the entrance for LAs to induce tonic block. In this review, we will focus on the effects of LA binding on fast inactivation and use-dependent inhibition in the light of the proposed new allosteric mechanism of fast inactivation. We will elaborate on subtype and species specificity and provide insights into modelling approaches that will help identify the exact molecular binding orientation, access pathways and pharmacokinetics. With this comprehensive overview, we will provide new perspectives in the use of the drug, both clinically and as a tool for basic ion channel research.

19.
Pain ; 163(9): 1800-1811, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35239546

RESUMO

ABSTRACT: Defined by dysfunction or degeneration of Aδ and C fibers, small fiber neuropathies (SFNs) entail a relevant health burden. In 50% of cases, the underlying cause cannot be identified or treated. In 100 individuals (70% female individuals; mean age: 44.8 years) with an idiopathic, skin biopsy-confirmed SFN, we characterized the symptomatic spectrum and measured markers of oxidative stress (vitamin C, selenium, and glutathione) and inflammation (transforming growth factor beta, tumor necrosis factor alpha), as well as neurotoxic 1-deoxy-sphingolipids. Neuropathic pain was the most abundant symptom (95%) and cause of daily life impairment (72%). Despite the common use of pain killers (64%), the painDETECT questionnaire revealed scores above 13 points in 80% of patients. In the quantitative sensory testing (QST), a dysfunction of Aδ fibers was observed in 70% and of C fibers in 44%, affecting the face, hands, or feet. Despite normal nerve conduction studies, QST revealed Aß fiber involvement in 46% of patients' test areas. Despite absence of diabetes mellitus or mutations in SPTLC1 or SPTLC2 , plasma 1-deoxy-sphingolipids were significantly higher in the sensory loss patient cluster when compared with those in patients with thermal hyperalgesia ( P < 0.01) or those in the healthy category ( P < 0.1), correlating inversely with the intraepidermal nerve fiber density (1-deoxy-SA: P < 0.05, 1-deoxy-SO: P < 0.01). Patients with arterial hypertension, overweight (body mass index > 25 kg/m 2 ), or hyperlipidemia showed significantly lower L-serine (arterial hypertension: P < 0.01) and higher 1-deoxy-sphingolipid levels (arterial hypertension: P < 0.001, overweight: P < 0.001, hyperlipidemia: P < 0.01). Lower vitamin C levels correlated with functional Aß involvement ( P < 0.05). Reduced glutathione was lower in patients with Aδ dysfunction ( P < 0.05). Idiopathic SFNs are heterogeneous. As a new pathomechanism, plasma 1-deoxy-sphingolipids might link the metabolic syndrome with small fiber degeneration.


Assuntos
Hipertensão , Neuropatia de Pequenas Fibras , Adulto , Ácido Ascórbico , Feminino , Humanos , Masculino , Sobrepeso/patologia , Estresse Oxidativo , Pele/inervação , Esfingolipídeos
20.
Biomaterials ; 282: 121389, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35121357

RESUMO

Colonies of induced pluripotent stem cells (iPSCs) reveal aspects of self-organization even under culture conditions that maintain pluripotency. To investigate the dynamics of this process under spatial confinement, we used either polydimethylsiloxane (PDMS) pillars or micro-contact printing of vitronectin. There was a progressive upregulation of OCT4, E-cadherin, and NANOG within 70 µm from the outer rim of iPSC colonies. Single-cell RNA-sequencing and spatial reconstruction of gene expression demonstrated that OCT4high subsets, residing at the edge of the colony, have pronounced up-regulation of the TGF-ß pathway, particularly of NODAL and its inhibitor LEFTY. Interestingly, after 5-7 days, iPSC colonies detached spontaneously from micro-contact printed substrates to form 3D aggregates. This new method allowed generation of embryoid bodies (EBs) of controlled size without enzymatic or mechanical treatment. Within the early 3D aggregates, radial organization and differential gene expression continued in analogy to the changes observed during self-organization of iPSC colonies. Early self-detached aggregates revealed up-regulated germline-specific gene expression patterns as compared to conventional EBs. However, there were no marked differences after further directed differentiation toward hematopoietic, mesenchymal, and neuronal lineages. Our results provide further insight into the gradual self-organization within iPSC colonies and at their transition into EBs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular/fisiologia , Corpos Embrioides/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...