Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(5): 7372-7382, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35299501

RESUMO

Synchrotron radiation (SR) has proven to be an invaluable contributor to the field of molecular spectroscopy, particularly in the terahertz region (1-10 THz) where its bright and broadband properties are currently unmatched by laboratory sources. However, measurements using SR are currently limited to a resolution of around 30 MHz, due to the limits of Fourier-transform infrared spectroscopy. To push the resolution limit further, we have developed a spectrometer based on heterodyne mixing of SR with a newly available THz molecular laser, which can operate at frequencies ranging from 1 to 5.5 THz. This spectrometer can record at a resolution of 80 kHz, with 5 GHz of bandwidth around each molecular laser frequency, making it the first SR-based instrument capable of sub-MHz, Doppler-limited spectroscopy across this wide range. This allows closely spaced spectral features, such as the effects of internal dynamics and fine angular momentum couplings, to be observed. Furthermore, mixing of the molecular laser with a THz comb is demonstrated, which will enable extremely precise determinations of molecular transition frequencies.

2.
Opt Lett ; 44(20): 4985-4988, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31613245

RESUMO

A new spectrometer allowing both high resolution and broadband coverage in the terahertz (THz) domain is proposed. This instrument exploits the heterodyne technique between broadband synchrotron radiation and a quantum-cascade-laser-based molecular THz laser that acts as the local oscillator. Proof of principle for exploitation for spectroscopy is provided by the recording of molecular absorptions of hydrogen sulfide (H2S) and methanol (CH3OH) around 1.073 THz. Ultimately, the spectrometer will enable to cover the 1-4 THz region in 5 GHz windows at Doppler resolution.

3.
Nanoscale ; 11(14): 7003, 2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30912785

RESUMO

Correction for 'Transport mechanisms in a puckered graphene-on-lattice' by T. Xu et al., Nanoscale, 2018, 10, 7519-7525.

4.
Nanoscale ; 10(16): 7519-7525, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29637980

RESUMO

Understanding the fundamental properties of graphene when its topography is patterned by the use of a compliant substrate is essential to improve the performances of graphene sensors. Here we suspend a graphene monolayer on SiO2 nanopillar arrays to form a puckered graphene-on-lattice and investigate the strain and electrical transport at the nanoscale. Despite a nonuniform strain in the graphene-on-lattice, the resistivity is governed by thermally activated transport and not the strain. We show that the high thermal activation energy results from a low charge carrier density and a periodic change of the chemical potential induced by the interaction of the graphene monolayer with the nanopillars, making the use of graphene-on-lattice attractive to further increase the electrical response of graphene sensors.

5.
Nat Commun ; 6: 7733, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26190043

RESUMO

Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10(-10) and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

6.
Opt Express ; 20(8): 8466-71, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22513554

RESUMO

The dispersion relation and confinement of terahertz surface plasmon modes propagating along planar Goubau lines are studied using guided-wave time domain spectroscopy. We demonstrate the radial nature of the surface plasmon mode known as the Goubau mode and the transverse confinement of the electric field over a few tenths of microns (~l/10). We experimentally and computationally observed a transition of the shape of the THz pulses from unipolar to bipolar as the propagation distance increases, indicating that the Goubau line acts as a high-pass filter. The deviation of the dispersion relation curve from a linear law above 600 GHz is discussed.

7.
Opt Lett ; 36(20): 3969-71, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22002355

RESUMO

We report the heterodyne detection and phase locking of a 2.5 THz quantum cascade laser (QCL) using a terahertz frequency comb generated in a GaAs photomixer using a femtosecond fiber laser. With 10 mW emitted by the QCL, the phase-locked signal at the intermediate frequency yields 80 dB of signal-to-noise ratio in a bandwidth of 1 Hz.

8.
Opt Lett ; 36(11): 2044-6, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21633443

RESUMO

Thanks to a portable dual-frequency Brillouin fiber laser and a 1.55 µm photomixer, we report the generation of a highly coherent kilohertz level submillimeter wave emission. Low-cost telecommunications components are used to achieve very simple source architecture. The photomixer is composed of a unitravelling carrier photodiode integrated with an antenna. An emission at 316 GHz is observed and analyzed thanks to heterodyne detection with a signal-to-noise ratio >65 dB and a ~1 kHz linewidth. The phase noise of the proposed source has the same performance at 1.7 and 316 GHz. We show that this source has comparable or better phase noise compared to electrical oscillators and the tunability is much wider.

9.
Opt Express ; 15(14): 8943-50, 2007 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19547233

RESUMO

We present a detailed study of the effect of the carrier lifetime on the terahertz signal characteristics emitted by Br(+)-irradiated In(0.53)Ga(0.47)As photoconductive antennas excited by 1550 nm wavelength femtosecond optical pulses. The temporal waveforms and the average radiated powers for various carrier lifetimes are experimentally analyzed and compared to predictions of analytical models of charge transport. Improvements in bandwidth and in average power of the emitted terahertz radiation are observed with the decrease of the carrier lifetime on the emitter. The power radiated by ion-irradiated In(0.53)Ga(0.47)As photoconductive antennas excited by 1550 nm wavelength optical pulses is measured to be 0.8 muW. This value is comparable with or greater than that emitted by similar low temperature grown GaAs photoconductive antennas excited by 780 nm wavelength optical pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...