Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34638496

RESUMO

In 50-60% of cases, systemic anaplastic large cell lymphoma (ALCL) is characterized by the t(2;5)(p23;q35) or one of its variants, considered to be causative for anaplastic lymphoma kinase (ALK)-positive (ALK+) ALCL. Key pathogenic events in ALK-negative (ALK-) ALCL are less well defined. We have previously shown that deregulation of oncogenic genes surrounding the chromosomal breakpoints on 2p and 5q is a unifying feature of both ALK+ and ALK- ALCL and predisposes for occurrence of t(2;5). Here, we report that the invariant chain of the MHC-II complex CD74 or li, which is encoded on 5q32, can act as signaling molecule, and whose expression in lymphoid cells is usually restricted to B cells, is aberrantly expressed in T cell-derived ALCL. Accordingly, ALCL shows an altered DNA methylation pattern of the CD74 locus compared to benign T cells. Functionally, CD74 ligation induces cell death of ALCL cells. Furthermore, CD74 engagement enhances the cytotoxic effects of conventional chemotherapeutics in ALCL cell lines, as well as the action of the ALK-inhibitor crizotinib in ALK+ ALCL or of CD95 death-receptor signaling in ALK- ALCL. Additionally, a subset of ALCL cases expresses the proto-oncogene MET, which can form signaling complexes together with CD74. Finally, we demonstrate that the CD74-targeting antibody-drug conjugate STRO-001 efficiently and specifically kills CD74-positive ALCL cell lines in vitro. Taken together, these findings enabled us to demonstrate aberrant CD74-expression in ALCL cells, which might serve as tool for the development of new treatment strategies for this lymphoma entity.

2.
PLoS One ; 16(8): e0256521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34424920

RESUMO

OBJECTIVE: To examine subgroup-specific treatment preferences and characteristics of patients with hemophilia A. METHODS: Best-Worst Scaling (BWS) Case 3 (four attributes: application type; bleeding frequencies/year; inhibitor development risk; thromboembolic events of hemophilia A treatment risk) conducted via online survey. Respondents chose the best and the worst option of three treatment alternatives. Data were analyzed via latent class model (LCM), allowing capture of heterogeneity in the sample. Respondents were grouped into a predefined number of classes with distinct preferences. RESULTS: The final dataset contained 57 respondents. LCM analysis segmented the sample into two classes with heterogeneous preferences. Preferences within each were homogeneous. For class 1, the most decisive factor was bleeding frequency/year. Respondents seemed to focus mainly on this in their choice decisions. With some distance, inhibitor development was the second most important. The remaining attributes were of far less importance for respondents in this class. Respondents in class 2 based their choice decisions primarily on inhibitor development, also followed, by some distance, the second most important attribute bleeding frequency/year. There was statistical significance (P < 0.05) between the number of annual bleedings and the probability of class membership. CONCLUSIONS: The LCM analysis addresses heterogeneity in respondents' choice decisions, which helps to tailor treatment alternatives to individual needs. Study results support clinical and allocative decision-making and improve the quality of interpretation of clinical data.


Assuntos
Preferência do Paciente , Comportamento de Escolha , Hemofilia A , Humanos , Análise de Classes Latentes
3.
Value Health ; 23(7): 862-869, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32762987

RESUMO

OBJECTIVE: To assess patient preferences for benefits and risks in hemophilia A treatment. METHODS: A systematic literature search and pretest interviews were conducted to determine the most patient-relevant endpoints in terms of effects, risks, and administration of hemophilia A treatments. A Best-Worst Scaling (BWS; Case 3 or multiprofile case) approach was applied in a structured questionnaire. Patients were surveyed by interviewers in a computer-assisted personal interview. Treatments in the choice scenarios comprised bleeding frequency per year, application type, risk of thromboembolic event risk, and inhibitor development. Each respondent answered 13 choice tasks, including 1 dominant task, comparing 3 treatment profiles. Data were analyzed using a mixed logit model (random-parameters logit). RESULTS: Data from 57 patients were used. The attributes "bleeding frequency per year" and "inhibitor development" had the greatest impact on respondents' choice decisions. Patients disliked being at risk of inhibitor development more than being at risk of thromboembolic events. The type of application, whether intravenous or subcutaneous, was of less importance for patients. There was a significant preference variation for all attributes. CONCLUSIONS: Patients value low frequency of bleeding per year and low risk of development of inhibitors the most. An increase of risk and frequency would significantly decrease the impact on choice decisions. The type of application does not seem to influence the choice decision very much compared with the other attributes. Regarding preference heterogeneity, further analysis is needed to identify subgroups among patients and their characteristics. This may help to adapt individually patient-tailored treatment alternatives for hemophilia A patients.


Assuntos
Comportamento de Escolha , Tomada de Decisões , Hemofilia A/terapia , Preferência do Paciente , Hemofilia A/fisiopatologia , Humanos , Inquéritos e Questionários , Tromboembolia/epidemiologia
4.
Proc Natl Acad Sci U S A ; 111(42): E4513-22, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288773

RESUMO

Deregulated transcription factor (TF) activities are commonly observed in hematopoietic malignancies. Understanding tumorigenesis therefore requires determining the function and hierarchical role of individual TFs. To identify TFs central to lymphomagenesis, we identified lymphoma type-specific accessible chromatin by global mapping of DNaseI hypersensitive sites and analyzed enriched TF-binding motifs in these regions. Applying this unbiased approach to classical Hodgkin lymphoma (HL), a common B-cell-derived lymphoma with a complex pattern of deregulated TFs, we discovered interferon regulatory factor (IRF) sites among the top enriched motifs. High-level expression of the proinflammatory TF IRF5 was specific to HL cells and crucial for their survival. Furthermore, IRF5 initiated a regulatory cascade in human non-Hodgkin B-cell lines and primary murine B cells by inducing the TF AP-1 and cooperating with NF-κB to activate essential characteristic features of HL. Our strategy efficiently identified a lymphoma type-specific key regulator and uncovered a tumor promoting role of IRF5.


Assuntos
Cromatina/metabolismo , Doença de Hodgkin/genética , Doença de Hodgkin/metabolismo , Fatores Reguladores de Interferon/metabolismo , Fator de Transcrição AP-1/metabolismo , Motivos de Aminoácidos , Animais , Linfócitos B/citologia , Linhagem Celular Tumoral , Linhagem da Célula , Quimiocinas/metabolismo , Quimiotaxia , Citocinas/metabolismo , Desoxirribonuclease I/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação , Leucócitos Mononucleares/citologia , Linfoma/metabolismo , Linfoma não Hodgkin/metabolismo , Camundongos , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/metabolismo , Baço/citologia
5.
Nat Commun ; 5: 5057, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25266931

RESUMO

The capacity of dendritic cells (DCs) to regulate tumour-specific adaptive immune responses depends on their proper differentiation and homing status. Whereas DC-associated tumour-promoting functions are linked to T-cell tolerance and formation of an inflammatory milieu, DC-mediated direct effects on tumour growth have remained unexplored. Here we show that deletion of DCs substantially delays progression of Myc-driven lymphomas. Lymphoma-exposed DCs upregulate immunomodulatory cytokines, growth factors and the CCAAT/enhancer-binding protein ß (C/EBPß). Moreover, Eµ-Myc lymphomas induce the preferential translation of the LAP/LAP* isoforms of C/EBPß. C/EBPß(-/-) DCs are unresponsive to lymphoma-associated cytokine changes and in contrast to wild-type DCs, they are unable to mediate enhanced Eµ-Myc lymphoma cell survival. Antigen-specific T-cell proliferation in lymphoma-bearing mice is impaired; however, this immune suppression is reverted by the DC-restricted deletion of C/EBPß. Thus, we show that C/EBPß-controlled DC functions are critical steps for the creation of a lymphoma growth-promoting and -immunosuppressive niche.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/imunologia , Células Dendríticas/imunologia , Linfoma de Células B/imunologia , Proteína Oncogênica p55(v-myc)/imunologia , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Células Dendríticas/citologia , Humanos , Linfoma de Células B/genética , Linfoma de Células B/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica p55(v-myc)/genética
6.
Structure ; 21(4): 550-9, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23454188

RESUMO

GTPases of immunity-associated proteins (GIMAPs) are regulators of lymphocyte survival and homeostasis. We previously determined the structural basis of GTP-dependent GIMAP2 scaffold formation on lipid droplets. To understand how its GTP hydrolysis is activated, we screened for other GIMAPs on lipid droplets and identified GIMAP7. In contrast to GIMAP2, GIMAP7 displayed dimerization-stimulated GTP hydrolysis. The crystal structure of GTP-bound GIMAP7 showed a homodimer that assembled via the G domains, with the helical extensions protruding in opposite directions. We identified a catalytic arginine that is supplied to the opposing monomer to stimulate GTP hydrolysis. GIMAP7 also stimulated GTP hydrolysis by GIMAP2 via an analogous mechanism. Finally, we found GIMAP2 and GIMAP7 expression differentially regulated in several human T cell lymphoma lines. Our findings suggest that GTPase activity in the GIMAP family is controlled by homo- and heterodimerization. This may have implications for the differential roles of some GIMAPs in lymphocyte survival.


Assuntos
Ativação Enzimática/fisiologia , GTP Fosfo-Hidrolases/química , Proteínas de Ligação ao GTP/química , Proteínas de Membrana/química , Modelos Moleculares , Conformação Proteica , Linfócitos T/metabolismo , Calorimetria , Linhagem Celular , Cristalização , Dimerização , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Hidrólise , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ultracentrifugação
7.
J Exp Med ; 208(8): 1585-93, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21788410

RESUMO

The transcription factor E2A is essential for lymphocyte development. In this study, we describe a recurrent E2A gene deletion in at least 70% of patients with Sézary syndrome (SS), a subtype of T cell lymphoma. Loss of E2A results in enhanced proliferation and cell cycle progression via derepression of the protooncogene MYC and the cell cycle regulator CDK6. Furthermore, by examining the gene expression profile of SS cells after restoration of E2A expression, we identify several E2A-regulated genes that interfere with oncogenic signaling pathways, including the Ras pathway. Several of these genes are down-regulated or lost in primary SS tumor cells. These data demonstrate a tumor suppressor function of E2A in human lymphoid cells and could help to develop new treatment strategies for human lymphomas with altered E2A activity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Síndrome de Sézary/genética , Transdução de Sinais/genética , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Hibridização Genômica Comparativa , Quinase 6 Dependente de Ciclina/metabolismo , Primers do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Perfilação da Expressão Gênica , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Leucócitos Mononucleares , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-myc/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Proteínas ras/metabolismo
9.
Cell Cycle ; 9(21): 4276-81, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20980818

RESUMO

Recent data demonstrated that the aberrant activity of endogenous repetitive elements of the DNA in humans can drive the expression of proto-oncogenes. This article summarizes these results and gives an outlook on the impact of these findings on the pathogenesis and therapy of human cancer.


Assuntos
Doença de Hodgkin/genética , Proto-Oncogenes/genética , Linhagem Celular Tumoral , Citocinas/metabolismo , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Doença de Hodgkin/metabolismo , Humanos , Modelos Biológicos , NF-kappa B/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Sequências Repetidas Terminais
10.
Nat Med ; 16(5): 571-9, 1p following 579, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20436485

RESUMO

Mammalian genomes contain many repetitive elements, including long terminal repeats (LTRs), which have long been suspected to have a role in tumorigenesis. Here we present evidence that aberrant LTR activation contributes to lineage-inappropriate gene expression in transformed human cells and that such gene expression is central for tumor cell survival. We show that B cell-derived Hodgkin's lymphoma cells depend on the activity of the non-B, myeloid-specific proto-oncogene colony-stimulating factor 1 receptor (CSF1R). In these cells, CSF1R transcription initiates at an aberrantly activated endogenous LTR of the MaLR family (THE1B). Derepression of the THE1 subfamily of MaLR LTRs is widespread in the genome of Hodgkin's lymphoma cells and is associated with impaired epigenetic control due to loss of expression of the corepressor CBFA2T3. Furthermore, we detect LTR-driven CSF1R transcripts in anaplastic large cell lymphoma, in which CSF1R is known to be expressed aberrantly. We conclude that LTR derepression is involved in the pathogenesis of human lymphomas, a finding that might have diagnostic, prognostic and therapeutic implications.


Assuntos
Fatores Estimuladores de Colônias/genética , Linfoma/genética , Fator Estimulador de Colônias de Macrófagos/genética , Proto-Oncogenes/genética , Sequências Repetidas Terminais , Expressão Gênica , Doença de Hodgkin/genética , Humanos , Linfoma de Células B/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proto-Oncogene Mas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
11.
Proc Natl Acad Sci U S A ; 106(14): 5831-6, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19321746

RESUMO

Although the identification and characterization of translocations have rapidly increased, little is known about the mechanisms of how translocations occur in vivo. We used anaplastic large cell lymphoma (ALCL) with and without the characteristic t(2;5)(p23;q35) translocation to study the mechanisms of formation of translocations and of ALCL transformation. We report deregulation of several genes located near the ALCL translocation breakpoint, regardless of whether the tumor contains the t(2;5). The affected genes include the oncogenic transcription factor Fra2 (located on 2p23), the HLH protein Id2 (2p25), and the oncogenic tyrosine kinase CSF1-receptor (5q33.1). Their up-regulation promotes cell survival and repression of T cell-specific gene expression programs that are characteristic for ALCL. The deregulated genes are in spatial proximity within the nuclear space of t(2;5)-negative ALCL cells, facilitating their translocation on induction of double-strand breaks. These data suggest that deregulation of breakpoint-proximal genes occurs before the formation of translocations, and that aberrant transcriptional activity of genomic regions is linked to their propensity to undergo chromosomal translocations. Also, our data demonstrate that deregulation of breakpoint-proximal genes has a key role in ALCL.


Assuntos
Quebra Cromossômica , Antígeno 2 Relacionado a Fos/genética , Regulação Neoplásica da Expressão Gênica , Proteína 2 Inibidora de Diferenciação/genética , Linfoma Anaplásico de Células Grandes/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Translocação Genética , Linhagem Celular Tumoral , Cromossomos Humanos Par 2 , Cromossomos Humanos Par 5 , Genoma Humano , Humanos , Linfoma Anaplásico de Células Grandes/patologia , Transcrição Gênica
12.
Traffic ; 10(1): 2-15, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18939954

RESUMO

The heptahelical G protein-coupled receptors (GPCRs) are internalized following agonist treatment and either recycle rapidly to the plasma membrane or enter the lysosomal degradation pathway. Many conventional GPCR recycling assays suffer from the fact that receptors arriving from the secretory pathway may interfere with recycling receptors. In this study, we introduce a new methodology to study post-endocytotic GPCR trafficking using fusions with the recently cloned Kaede protein. In contrast to the widely used green fluorescent protein, the fluorescence of Kaede can be converted from green to red using ultraviolet irradiation. Our methodology allows to study recycling of GPCRs microscopically in real-time bypassing problems with secretory pathway receptors. Initially, receptors are internalized using an agonist. Fluorescence signals in endosomes are switched, and trafficking of the receptors to the plasma membrane can be easily visualized by monitoring their new fluorescence. Using this methodology, we show that the corticotropin-releasing factor receptor type 1 belongs to the family of recycling GPCRs. Moreover, we demonstrate by fluorescence correlation spectroscopy that Kaede does not oligomerize when fused to membrane proteins, representing an additional advantage of this technique. The Kaede technology may be a powerful tool to study membrane protein trafficking in general.


Assuntos
Proteínas Luminescentes/análise , Microscopia de Fluorescência/métodos , Receptores Acoplados a Proteínas G/análise , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular , Humanos , Ligantes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Fotoquímica , Ratos , Receptores Acoplados a Proteínas G/genética , Fatores de Tempo
13.
Blood ; 112(8): 3339-47, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18684866

RESUMO

The malignant Hodgkin/Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (HL) are derived from mature B cells, but have lost a considerable part of the B cell-specific gene expression pattern. Consequences of such a lineage infidelity for lymphoma pathogenesis are currently not defined. Here, we report that HRS cells aberrantly express the common cytokine-receptor gamma-chain (gamma(c)) cytokine IL-21, which is usually restricted to a subset of CD4(+) T cells, and the corresponding IL-21 receptor. We demonstrate that IL-21 activates STAT3 in HRS cells, up-regulates STAT3 target genes, and protects HRS cells from CD95 death receptor-induced apoptosis. Furthermore, IL-21 is involved in up-regulation of the CC chemokine macrophage-inflammatory protein-3alpha (MIP-3alpha) in HRS cells. MIP-3alpha in turn attracts CCR6(+)CD4(+)CD25(+)FoxP3(+)CD127(lo) regulatory T cells toward HRS cells, which might favor their immune escape. Together, these data support the concept that aberrant expression of B lineage-inappropriate genes plays an important role for the biology of HL tumor cells.


Assuntos
Quimiocina CCL20/metabolismo , Regulação Neoplásica da Expressão Gênica , Doença de Hodgkin/metabolismo , Interleucinas/metabolismo , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th2/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Humanos , Sistema Imunitário , Interleucina-6/metabolismo , Receptor fas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...