Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(25): 45832-45847, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522979

RESUMO

Exploring the interaction of light with materials periodically structured in space and time is intellectually rewarding and, simultaneously, a computational challenge. Appropriate computational tools are urgently needed to explore how such upcoming photonic materials can control light on demand. Here, we introduce a semi-analytical approach based on the transition matrix (also known as T-matrix) to analyze the optical response of a spatiotemporal metasurface. The metasurface consists of a periodic arrangement of time-varying scattering particles. In our approach, we depart from an individual scatterer's T-matrix to construct the effective T-matrix of the metasurface. From that effective T-matrix, all observable properties can reliably be predicted. We verify our semi-analytical approach with full-wave numerical simulations. We demonstrate a speed-up with our approach by a factor of more than 500 compared to a finite-element simulation. Finally, we exemplify our approach by studying the effect of time modulation on a Huygens' metasurface and discuss some emerging observable features.

2.
Nanoscale ; 11(4): 1745-1753, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30623948

RESUMO

We investigate second- and third-harmonic generation from individual AlGaAs nanoantennas using far-field mapping with radially- and azimuthally-polarized cylindrical vector beams. Due to the unique polarization structure of these beams, we are able to determine the crystal orientation of the nanoantenna in a single scanning map. Our method thus provides a novel and versatile optical tool to study the crystal properties of semiconductor nanoantennas. We also demonstrate the influence of cylindrical vector beam excitation on the resonant enhancement of second- and third-harmonic generation driven by electric and magnetic anapole-like modes, despite falling in the strong absorption regime of AlGaAs. In particular, we observe a greater nonlinear conversion efficiency from a single nanoantenna excited with a radially-polarized beam as compared to an azimuthally polarized cylindrical vector beam. The fundamental field of the radially-polarized beam strongly couples to the multipoles increasing the near-field enhancement of the nanoantenna. Our work introduces new ways to study individual nanostructures and to tailor the efficiencies of nonlinear phenomena at the nanoscale using non-conventional optical techniques.

3.
Beilstein J Nanotechnol ; 9: 1478-1490, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977681

RESUMO

Nonradiating current configurations have been drawing the attention of the physics community for many years. It has been demonstrated recently that dielectric nanoparticles provide a unique platform to host such nonradiating modes, called "anapoles". Here we study theoretically the excitation of such exotic anapole modes in silicon nanoparticles using structured light. Alternative illumination configurations, properly designed, are able to unlock hidden behavior of scatterers. Particularly, azimuthally polarized focused beams enable us to excite ideal anapole modes of magnetic type in dielectric nanoparticles. Firstly, we perform the decomposition of this type of excitation into its multipolar content and then we employ the T-matrix method to calculate the far-field scattering properties of nanoparticles illuminated by such beams. We propose several configuration schemes where magnetic anapole modes of simple or hybrid nature can be detected in silicon nanospheres, nanodisks and nanopillars.

4.
Light Sci Appl ; 7: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30839609

RESUMO

We demonstrate that a dielectric anapole resonator on a metallic mirror can enhance the third harmonic emission by two orders of magnitude compared to a typical anapole resonator on an insulator substrate. By employing a gold mirror under a silicon nanodisk, we introduce a novel characteristic of the anapole mode through the spatial overlap of resonantly excited Cartesian electric and toroidal dipole modes. This is a remarkable improvement on the early demonstrations of the anapole mode in which the electric and toroidal modes interfere off-resonantly. Therefore, our system produces a significant near-field enhancement, facilitating the nonlinear process. Moreover, the mirror surface boosts the nonlinear emission via the free-charge oscillations within the interface, equivalent to producing a mirror image of the nonlinear source and the pump beneath the interface. We found that these improvements result in an extremely high experimentally obtained efficiency of 0.01%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...