Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 121(6): 1245-1261, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38750617

RESUMO

Linear, unbranched (1,3;1,4)-ß-glucans (mixed-linkage glucans or MLGs) are commonly found in the cell walls of grasses, but have also been detected in basal land plants, algae, fungi and bacteria. Here we show that two family GT2 glycosyltransferases from the Gram-positive bacterium Sarcina ventriculi are capable of synthesizing MLGs. Immunotransmission electron microscopy demonstrates that MLG is secreted as an exopolysaccharide, where it may play a role in organizing individual cells into packets that are characteristic of Sarcina species. Heterologous expression of these two genes shows that they are capable of producing MLGs in planta, including an MLG that is chemically identical to the MLG secreted from S. ventriculi cells but which has regularly spaced (1,3)-ß-linkages in a structure not reported previously for MLGs. The tandemly arranged, paralogous pair of genes are designated SvBmlgs1 and SvBmlgs2. The data indicate that MLG synthases have evolved different enzymic mechanisms for the incorporation of (1,3)-ß- and (1,4)-ß-glucosyl residues into a single polysaccharide chain. Amino acid variants associated with the evolutionary switch from (1,4)-ß-glucan (cellulose) to MLG synthesis have been identified in the active site regions of the enzymes. The presence of MLG synthesis in bacteria could prove valuable for large-scale production of MLG for medical, food and beverage applications.


Assuntos
Glicosiltransferases , beta-Glucanas , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , beta-Glucanas/metabolismo , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo
2.
Ophthalmology ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703795

RESUMO

PURPOSE: Defining how the in vivo immune status of peripheral tissues is shaped by the external environment has remained a technical challenge. We recently developed Functional in vivo confocal microscopy (Fun-IVCM) for dynamic, longitudinal imaging of corneal immune cells in living humans. This study investigated the effect of seasonal-driven environmental factors on the morphodynamic features of human corneal immune cell subsets. DESIGN: Longitudinal, observational clinical study. PARTICIPANTS: Sixteen healthy participants (aged 18-40 years) attended 2 visits in distinct seasons in Melbourne, Australia (Visit 1, November-December 2021 [spring-summer]; Visit 2, April-June 2022 [autumn-winter]). METHODS: Environmental data were collected over each period. Participants underwent ocular surface examinations and corneal Fun-IVCM (Heidelberg Engineering). Corneal scans were acquired at 5.5 ± 1.5-minute intervals for up to 5 time points. Time-lapse Fun-IVCM videos were created to analyze corneal immune cells, comprising epithelial T cells and dendritic cells (DCs), and stromal macrophages. Tear cytokines were analyzed using a multiplex bead-based immunoassay. MAIN OUTCOME MEASURES: Difference in the density, morphology, and dynamic parameters of corneal immune cell subsets over the study periods. RESULTS: Visit 1 was characterized by higher temperature, lower humidity, and higher air particulate and pollen levels compared with Visit 2. Clinical ocular surface parameters and the density of immune cell subsets were similar across visits. At Visit 1 , corneal epithelial DCs were larger, with a lower dendrite probing speed (0.38 ± 0.21 vs. 0.68 ± 0.33 µm/min; P < 0.001) relative to Visit 2; stromal macrophages were more circular and had less dynamic activity (Visit 1, 7.2 ± 1.9 vs. Visit 2, 10.3 ± 3.7 dancing index; P < 0.001). Corneal T cell morphodynamics were unchanged across periods. Basal tear levels of interleukin 2 and CXCL10 were relatively lower during spring-summer. CONCLUSIONS: This study identifies that the in vivo morphodynamics of innate corneal immune cells (DCs, macrophages) are modified by environmental factors, but such effects are not evident for adaptive immune cells (T cells). The cornea is a potential in vivo window to investigate season-dependent environmental influences on the human immune system. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

3.
PLoS One ; 19(2): e0292149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358988

RESUMO

Plant cells possess robust and flexible cell walls composed primarily of cellulose, a polysaccharide that provides structural support and enables cell expansion. Cellulose is synthesised by the Cellulose Synthase A (CESA) catalytic subunits, which form cellulose synthase complexes (CSCs). While significant progress has been made in unravelling CSC function, the trafficking of CSCs and the involvement of post-translational modifications in cellulose synthesis remain poorly understood. In order to deepen our understanding of cellulose biosynthesis, this study utilised immunoprecipitation techniques with CESA6 as the bait protein to explore the CSC and its interactors. We have successfully identified the essential components of the CSC complex and, notably, uncovered novel interactors associated with CSC trafficking, post-translational modifications, and the coordination of cell wall synthesis. Moreover, we identified TIP GROWTH DEFECTIVE 1 (TIP1) protein S-acyl transferases (PATs) as an interactor of the CSC complex. We confirmed the interaction between TIP1 and the CSC complex through multiple independent approaches. Further analysis revealed that tip1 mutants exhibited stunted growth and reduced levels of crystalline cellulose in leaves. These findings suggest that TIP1 positively influences cellulose biosynthesis, potentially mediated by its role in the S-acylation of the CSC complex.


Assuntos
Aciltransferases , Proteínas de Arabidopsis , Arabidopsis , Celulose , Glucosiltransferases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Glucosiltransferases/metabolismo , Aciltransferases/metabolismo
4.
Plant Cell ; 35(7): 2635-2653, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-36972404

RESUMO

PHYTOCHROME KINASE SUBSTRATE (PKS) proteins are involved in light-modulated changes in growth orientation. They act downstream of phytochromes to control hypocotyl gravitropism in the light and act early in phototropin signaling. Despite their importance for plant development, little is known about their molecular mode of action, except that they belong to a protein complex comprising phototropins at the plasma membrane (PM). Identifying evolutionary conservation is one approach to revealing biologically important protein motifs. Here, we show that PKS sequences are restricted to seed plants and that these proteins share 6 motifs (A to F from the N to the C terminus). Motifs A and D are also present in BIG GRAIN, while the remaining 4 are specific to PKSs. We provide evidence that motif C is S-acylated on highly conserved cysteines, which mediates the association of PKS proteins with the PM. Motif C is also required for PKS4-mediated phototropism and light-regulated hypocotyl gravitropism. Finally, our data suggest that the mode of PKS4 association with the PM is important for its biological activity. Our work, therefore, identifies conserved cysteines contributing to PM association of PKS proteins and strongly suggests that this is their site of action to modulate environmentally regulated organ positioning.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Fitocromo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteína S/metabolismo , Luz , Fototropismo , Hipocótilo , Acilação
5.
Environ Res ; 214(Pt 1): 113762, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35779617

RESUMO

BACKGROUND: Allergic rhinitis affects half a billion people globally, including a fifth of the Australian population. As the foremost outdoor allergen source, ambient grass pollen exposure is likely to be altered by climate change. The AusPollen Partnership aimed to standardize pollen monitoring and examine broad-scale biogeographical and meteorological factors influencing interannual variation in seasonality of grass pollen aerobiology in Australia. METHODS: Daily airborne grass and other pollen concentrations in four eastern Australian cities separated by over 1700 km, were simultaneously monitored using Hirst-style samplers following the Australian Interim Pollen and Spore Monitoring Standard and Protocols over four seasons from 2016 to 2020. The grass seasonal pollen integral was determined. Gridded rainfall, temperature, and satellite-derived grassland sources up to 100 km from the monitoring site were analysed. RESULTS: The complexity of grass pollen seasons was related to latitude with multiple major summer-autumn peaks in Brisbane, major spring and minor summer peaks in Sydney and Canberra, and single major spring peaks occurring in Melbourne. The subtropical site of Brisbane showed a higher proportion of grass out of total pollen than more temperate sites. The magnitude of the grass seasonal pollen integral was correlated with pasture greenness, rainfall and number of days over 30 °C, preceding and within the season, up to 100 km radii from monitoring sites. CONCLUSIONS: Interannual fluctuations in Australian grass pollen season magnitude are strongly influenced by regional biogeography and both pre- and in-season weather. This first continental scale, Southern Hemisphere standardized aerobiology dataset forms the basis to track shifts in pollen seasonality, biodiversity and impacts on allergic respiratory diseases.


Assuntos
Alérgenos , Pólen , Austrália , Humanos , Conceitos Meteorológicos , Poaceae , Estações do Ano
6.
J Am Heart Assoc ; 11(7): e023036, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35289185

RESUMO

Background Atmospheric changes in pollen concentration may affect human health by triggering various allergic processes. We sought to assess if changes in pollen concentrations were associated with different acute coronary syndrome (ACS) subtype presentations and short-term clinical outcomes. Methods and Results We analyzed data in consecutive patients presenting with ACS (unstable angina, non-ST-segment-elevation myocardial infarction, and ST-segment-elevation myocardial infarction) treated with percutaneous coronary intervention between January 2014 and December 2017 and enrolled in the VCOR (Victorian Cardiac Outcomes Registry). Baseline characteristics were compared among patients exposed to different grass and total pollen concentrations. The primary outcome was occurrence of ACS subtypes and 30-day major adverse cardiac and cerebrovascular events (composite of mortality, myocardial infarction, stent thrombosis, target vessel revascularization, or stroke). Of 15 379 patients, 7122 (46.3%) presented with ST-segment-elevation myocardial infarction, 6781 (44.1%) with non-ST-segment-elevation myocardial infarction, and 1476 (9.6%) with unstable angina. The mean age was 62.5 years, with men comprising 76% of patients. No association was observed between daily or seasonal grass and total pollen concentrations with the frequency of ACS subtype presentation. However, grass and total pollen concentrations in the preceding days (2-day average for grass pollen and 7-day average for total pollen) correlated with in-hospital mortality (odds ratio [OR], 2.17 [95% CI, 1.12-4.21]; P=0.021 and OR, 2.78 [95% CI, 1.00-7.74]; P=0.05), respectively, with a trend of 2-day grass pollen for 30-day major adverse cardiac and cerebrovascular events (OR, 1.50 [95% CI, 0.97-2.32]; P=0.066). Conclusions Increased pollen concentrations were not associated with differential ACS subtype presentation but were significantly related to in-hospital mortality following percutaneous coronary intervention, underscoring a potential biologic link between pollen exposure and clinical outcomes.


Assuntos
Síndrome Coronariana Aguda , Infarto do Miocárdio sem Supradesnível do Segmento ST , Intervenção Coronária Percutânea , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/epidemiologia , Síndrome Coronariana Aguda/terapia , Angina Instável/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio sem Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio sem Supradesnível do Segmento ST/epidemiologia , Infarto do Miocárdio sem Supradesnível do Segmento ST/terapia , Intervenção Coronária Percutânea/efeitos adversos , Pólen , Resultado do Tratamento
7.
Hortic Res ; 8(1): 137, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059643

RESUMO

Transfer RNAs (tRNA) are crucial adaptor molecules between messenger RNA (mRNA) and amino acids. Recent evidence in plants suggests that dicistronic tRNA-like structures also act as mobile signals for mRNA transcripts to move between distant tissues. Co-transcription is not a common feature in the plant nuclear genome and, in the few cases where polycistronic transcripts have been found, they include non-coding RNA species, such as small nucleolar RNAs and microRNAs. It is not known, however, the extent to which dicistronic transcripts of tRNA and mRNAs are expressed in field-grown plants, or the factors contributing to their expression. We analysed tRNA-mRNA dicistronic transcripts in the major horticultural crop grapevine (Vitis vinifera) using a novel pipeline developed to identify dicistronic transcripts from high-throughput RNA-sequencing data. We identified dicistronic tRNA-mRNA in leaf and berry samples from 22 commercial vineyards. Of the 124 tRNA genes that were expressed in both tissues, 18 tRNA were expressed forming part of 19 dicistronic tRNA-mRNAs. The presence and abundance of dicistronic molecules was tissue and geographic sub-region specific. In leaves, the expression patterns of dicistronic tRNA-mRNAs significantly correlated with tRNA expression, suggesting that their transcriptional regulation might be linked. We also found evidence of syntenic genomic arrangements of tRNAs and protein-coding genes between grapevine and Arabidopsis thaliana, and widespread prevalence of dicistronic tRNA-mRNA transcripts among vascular land plants but no evidence of these transcripts in non-vascular lineages. This suggests that the appearance of plant vasculature and tRNA-mRNA occurred concurrently during the evolution of land plants.

8.
Plant Cell Physiol ; 62(12): 1791-1812, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34129041

RESUMO

Growth, development, structure as well as dynamic adaptations and remodeling processes in plants are largely controlled by properties of their cell walls. These intricate wall structures are mostly made up of different sugars connected through specific glycosidic linkages but also contain many glycosylated proteins. A key plant sugar that is present throughout the plantae, even before the divergence of the land plant lineage, but is not found in animals, is l-arabinose (l-Ara). Here, we summarize and discuss the processes and proteins involved in l-Ara de novo synthesis, l-Ara interconversion, and the assembly and recycling of l-Ara-containing cell wall polymers and proteins. We also discuss the biological function of l-Ara in a context-focused manner, mainly addressing cell wall-related functions that are conferred by the basic physical properties of arabinose-containing polymers/compounds. In this article we explore these processes with the goal of directing future research efforts to the many exciting yet unanswered questions in this research area.


Assuntos
Arabinose/metabolismo , Parede Celular/metabolismo , Plantas/metabolismo , Arabinose/biossíntese
9.
Front Plant Sci ; 12: 678564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113372

RESUMO

Arabinogalactan-proteins (AGPs) are members of the hydroxyproline-rich glycoprotein (HRGP) superfamily, a group of highly diverse proteoglycans that are present in the cell wall, plasma membrane as well as secretions of almost all plants, with important roles in many developmental processes. The role of GALT8 (At1g22015), a Glycosyltransferase-31 (GT31) family member of the Carbohydrate-Active Enzyme database (CAZy), was examined by biochemical characterization and phenotypic analysis of a galt8 mutant line. To characterize its catalytic function, GALT8 was heterologously expressed in tobacco leaves and its enzymatic activity tested. GALT8 was shown to be a ß-(1,3)-galactosyltransferase (GalT) that catalyzes the synthesis of a ß-(1,3)-galactan, similar to the in vitro activity of KNS4/UPEX1 (At1g33430), a homologous GT31 member previously shown to have this activity. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) confirmed the products were of 2-6 degree of polymerisation (DP). Previous reporter studies showed that GALT8 is expressed in the central and synergid cells, from whence the micropylar endosperm originates after the fertilization of the central cell of the ovule. Homozygous mutants have multiple seedling phenotypes including significantly shorter hypocotyls and smaller leaf area compared to wild type (WT) that are attributable to defects in female gametophyte and/or endosperm development. KNS4/UPEX1 was shown to partially complement the galt8 mutant phenotypes in genetic complementation assays suggesting a similar but not identical role compared to GALT8 in ß-(1,3)-galactan biosynthesis. Taken together, these data add further evidence of the important roles GT31 ß-(1,3)-GalTs play in elaborating type II AGs that decorate AGPs and pectins, thereby imparting functional consequences on plant growth and development.

10.
Allergy Rhinol (Providence) ; 12: 21526567211010728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996193

RESUMO

BACKGROUND: The most severe thunderstorm asthma (TA) event occurred in Melbourne on the 21st November 2016 and during this period, daily pollen information was available and accessible on smart devices via an App. An integrated survey within the App allows users to self-report symptoms. OBJECTIVE: To explore patterns of symptom survey results during the period when the TA event occurred. METHODS: Symptom data from the Melbourne Pollen Count and Forecast App related to asthma history, hay fever symptoms, and medication use was explored. A one-week control period before and after the event was considered. Chi-square tests and logistic regression were used to assess associations between sex, age, symptoms, and medication use. RESULTS: Of the 28,655 responses, during the 2016 pollen season, younger (18 to 40 years) males, with no hay fever and no asthma were the most single and regular responders. During the TA event for new users, sex was only significantly associated with hay fever (p = 0.008) of which 60.2% of females' responses reported having hay fever, while 43% of males' responses did not. Those with mild symptoms peaked during the TA event. CONCLUSIONS: Many individuals completed the survey on the app for the first time during the TA event indicating the potential of digital technologies to be used as indicators of health risk among populations at risk of TA events.

11.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33729990

RESUMO

Cellulose is synthesized by cellulose synthases (CESAs) from the glycosyltransferase GT-2 family. In plants, the CESAs form a six-lobed rosette-shaped CESA complex (CSC). Here we report crystal structures of the catalytic domain of Arabidopsis thaliana CESA3 (AtCESA3CatD) in both apo and uridine diphosphate (UDP)-glucose (UDP-Glc)-bound forms. AtCESA3CatD has an overall GT-A fold core domain sandwiched between a plant-conserved region (P-CR) and a class-specific region (C-SR). By superimposing the structure of AtCESA3CatD onto the bacterial cellulose synthase BcsA, we found that the coordination of the UDP-Glc differs, indicating different substrate coordination during cellulose synthesis in plants and bacteria. Moreover, structural analyses revealed that AtCESA3CatD can form a homodimer mainly via interactions between specific beta strands. We confirmed the importance of specific amino acids on these strands for homodimerization through yeast and in planta assays using point-mutated full-length AtCESA3. Our work provides molecular insights into how the substrate UDP-Glc is coordinated in the CESAs and how the CESAs might dimerize to eventually assemble into CSCs in plants.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Celulose/metabolismo , Glucosiltransferases/química , Uridina Difosfato Glucose/química , Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Manganês/química , Manganês/metabolismo , Mutação , Multimerização Proteica , Uridina Difosfato Glucose/metabolismo
13.
Sci Total Environ ; 720: 137351, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32325552

RESUMO

Seasonal allergic rhinitis (AR), also known as hay fever, is a common respiratory condition brought on by a range of environmental triggers. Previous work has characterised the relationships between community-level AR symptoms collected using mobile apps in two Australian cities, Canberra and Melbourne, and various environmental covariates including pollen. Here, we build on these relationships by assessing the skill of models that provide a next-day forecast of an individual's risk of developing AR and that nowcast ambient grass pollen concentrations using crowd-sourced AR symptoms as a predictor. Categorical grass pollen forecasts (low/moderate/high) were made based on binning mean daily symptom scores by corresponding categories. Models for an individual's risk were constructed by forward variable selection, considering environmental, demographic, behaviour and health-related inputs, with non-linear responses permitted. Proportional-odds logistic regression was then applied with the variables selected, modelling the symptom scores on their original five-point scale. AR symptom-based estimates of today's average grass pollen concentration were more accurate than those provided by two benchmark forecasting methods using various metrics for assessing accuracy. Predictions of an individual's next-day AR symptoms rated on a five-point scale were correct in 36% of cases and within one point on this scale in 82% of cases. Both outcomes were significantly better than chance. This large-scale AR symptoms measurement program shows that crowd-sourced symptom scores can be used to predict the daily average grass pollen concentration, as well as provide a personalised AR forecast.


Assuntos
Crowdsourcing , Rinite Alérgica Sazonal , Alérgenos , Austrália , Humanos , Poaceae , Pólen
14.
Sci Total Environ ; 705: 135147, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31841904

RESUMO

Allergic Rhinitis (AR) affects over half a billion people worldwide with an estimated prevalence of 1 in 5 individuals in developed countries. Although ambient pollen exposure is a causal factor in AR, the symptom-exposure relationship is typically not studied in the broader community but in small, well-characterised cohorts drawn from clinical populations. To identify relationships between AR symptoms in the community and a range of environmental factors, we used a database containing over 96,000 symptom score reports collected over a 3-year period (2014-2016) through freely available smartphone apps released in two Australian cities, Melbourne and Canberra. Ambient pollen levels and symptom scores were strongly related, with grass pollen explaining most of the symptom variation. Other factors correlated with higher symptom scores included temperature (R > 0.73) and wind speed (R > 0.75). In general, worse symptom scores were reported by younger participants, women, and those who had taken medication for AR in the preceding 24 h. The strength of this relationship varied between the two cities. Smartphone-based symptom surveys offer a cost-effective means of studying real-world risk factors for AR in a broader 'extra-clinical' population.


Assuntos
Crowdsourcing , Rinite Alérgica , Alérgenos , Austrália , Feminino , Humanos , Pólen
15.
Trends Plant Sci ; 24(5): 402-412, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30905522

RESUMO

Cellulose is an essential morphogenic polysaccharide that is central to the stability of plant cell walls and provides an important raw material for a range of plant-based fiber and fuel industries. The past decade has seen a substantial rise in the identification of cellulose synthesis-related components and in our understanding of how these components function. Much of this research has been conducted in Arabidopsis thaliana (arabidopsis); however, it has become increasingly evident that many of the components and their functions are conserved. We provide here an overview of cellulose synthesis 'core' components. The evolution and coexpression patterns of these components provide important insight into how cellulose synthesis evolved and the potential for the components to work as functional units during cellulose production.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Parede Celular , Celulose , Glucosiltransferases , Polissacarídeos
16.
Nat Commun ; 10(1): 857, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787279

RESUMO

Microtubules are filamentous structures necessary for cell division, motility and morphology, with dynamics critically regulated by microtubule-associated proteins (MAPs). Here we outline the molecular mechanism by which the MAP, COMPANION OF CELLULOSE SYNTHASE1 (CC1), controls microtubule bundling and dynamics to sustain plant growth under salt stress. CC1 contains an intrinsically disordered N-terminus that links microtubules at evenly distributed points through four conserved hydrophobic regions. By NMR and live cell analyses we reveal that two neighboring residues in the first hydrophobic binding motif are crucial for the microtubule interaction. The microtubule-binding mechanism of CC1 is reminiscent to that of the prominent neuropathology-related protein Tau, indicating evolutionary convergence of MAP functions across animal and plant cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tolerância ao Sal/fisiologia , Proteínas tau/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Celulose/biossíntese , Glucosiltransferases/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Proteínas Associadas aos Microtúbulos/genética , Tolerância ao Sal/genética , Plântula/crescimento & desenvolvimento
17.
Artigo em Inglês | MEDLINE | ID: mdl-30380692

RESUMO

Adolescent asthma is still a major problem with poor adherence to treatment. Globally, adolescents are devoted users of smartphone technologies and app use in asthma self-management may improve adherence. The objective of this systematic review is to assess the feasibility and efficacy of mobile technology in improving asthma outcomes in adolescents. We conducted an extensive review of the peer-review literature of studies with populations consisting of children and adolescents under 18 years in seven bibliographic databases and Google Scholar. All study designs were considered. Quality assessment of included studies were independently assessed and reported. The search identified 291 articles; of the 16 eligible full-text papers, 8 met the review criteria, reporting two interventional, two qualitative and four observational studies. Samples ranged from 12 to 21 participants. Heterogeneity related to study design and the methods of the included studies prevented meta-analysis. Nevertheless, the intervention studies reported a positive effect of smartphone apps on asthma control, medication adherence and self-efficacy. Smartphone apps may be an effective asthma control tool especially among adolescents who are major users of smartphones; however, conclusions are limited by a lack of controlled trials and adequate sample sizes.


Assuntos
Asma/terapia , Aplicativos Móveis , Autogestão/métodos , Smartphone , Adolescente , Asma/psicologia , Criança , Humanos , Adesão à Medicação , Autogestão/psicologia , Resultado do Tratamento
18.
PLoS One ; 13(4): e0194929, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29649224

RESUMO

We examine the seasonality of asthma-related hospital admissions in Melbourne, Australia, in particular the contribution and predictability of episodic thunderstorm asthma. Using a time-series ecological approach based on asthma admissions to Melbourne metropolitan hospitals, we identified seasonal peaks in asthma admissions that were centred in late February, June and mid-November. These peaks were most likely due to the return to school, winter viral infections and seasonal allergies, respectively. We performed non-linear statistical regression to predict daily admission rates as functions of the seasonal cycle, weather conditions, reported thunderstorms, pollen counts and air quality. Important predictor variables were the seasonal cycle and mean relative humidity in the preceding two weeks, with higher humidity associated with higher asthma admissions. Although various attempts were made to model asthma admissions, none of the models explained substantially more variation above that associated with the annual cycle. We also identified a list of high asthma admissions days (HAADs). Most HAADs fell in the late-February return-to-school peak and the November allergy peak, with the latter containing the greatest number of daily admissions. Many HAADs in the spring allergy peak may represent episodes of thunderstorm asthma, as they were associated with rainfall, thunderstorms, high ambient grass pollen levels and high humidity, a finding that suggests thunderstorm asthma is a recurrent phenomenon in Melbourne that occurs roughly once per five years. The rarity of thunderstorm asthma events makes prediction challenging, underscoring the importance of maintaining high standards of asthma management, both for patients and health professionals, especially during late spring and early summer.


Assuntos
Asma/diagnóstico , Asma/epidemiologia , Rinite Alérgica Sazonal/diagnóstico , Rinite Alérgica Sazonal/epidemiologia , Estações do Ano , Tempo (Meteorologia) , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Poluição do Ar , Alérgenos , Austrália , Criança , Pré-Escolar , Feminino , Hospitalização , Humanos , Lactente , Recém-Nascido , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Pólen/imunologia , Análise de Regressão , Adulto Jovem
19.
New Phytol ; 218(4): 1612-1630, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29574879

RESUMO

A plethora of developmental and physiological processes in land plants is influenced by auxin, to a large extent via alterations in gene expression by AUXIN RESPONSE FACTORs (ARFs). The canonical auxin transcriptional response system is a land plant innovation, however, charophycean algae possess orthologues of at least some classes of ARF and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) genes, suggesting that elements of the canonical land plant system existed in an ancestral alga. We reconstructed the phylogenetic relationships between streptophyte ARF and AUX/IAA genes and functionally characterized the solitary class C ARF, MpARF3, in Marchantia polymorpha. Phylogenetic analyses indicate that multiple ARF classes, including class C ARFs, existed in an ancestral alga. Loss- and gain-of-function MpARF3 alleles result in pleiotropic effects in the gametophyte, with MpARF3 inhibiting differentiation and developmental transitions in multiple stages of the life cycle. Although loss-of-function Mparf3 and Mpmir160 alleles respond to exogenous auxin treatments, strong miR-resistant MpARF3 alleles are auxin-insensitive, suggesting that class C ARFs act in a context-dependent fashion. We conclude that two modules independently evolved to regulate a pre-existing ARF transcriptional network. Whereas the auxin-TIR1-AUX/IAA pathway evolved to repress class A/B ARF activity, miR160 evolved to repress class C ARFs in a dynamic fashion.


Assuntos
Diferenciação Celular , Evolução Molecular , Marchantia/crescimento & desenvolvimento , Marchantia/genética , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Alelos , Diferenciação Celular/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Ácidos Indolacéticos/farmacologia , Marchantia/citologia , Marchantia/ultraestrutura , MicroRNAs/genética , MicroRNAs/metabolismo , Família Multigênica , Mutação/genética , Fenótipo , Filogenia , Desenvolvimento Vegetal/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Domínios Proteicos , Transdução de Sinais/efeitos dos fármacos , Esporos/efeitos dos fármacos , Esporos/fisiologia , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
20.
J Cell Sci ; 131(2)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29378834

RESUMO

Plant cells are surrounded by a strong polysaccharide-rich cell wall that aids in determining the overall form, growth and development of the plant body. Indeed, the unique shapes of the 40-odd cell types in plants are determined by their walls, as removal of the cell wall results in spherical protoplasts that are amorphic. Hence, assembly and remodeling of the wall is essential in plant development. Most plant cell walls are composed of a framework of cellulose microfibrils that are cross-linked to each other by heteropolysaccharides. The cell walls are highly dynamic and adapt to the changing requirements of the plant during growth. However, despite the importance of plant cell walls for plant growth and for applications that we use in our daily life such as food, feed and fuel, comparatively little is known about how they are synthesized and modified. In this Cell Science at a Glance article and accompanying poster, we aim to illustrate the underpinning cell biology of the synthesis of wall carbohydrates, and their incorporation into the wall, in the model plant Arabidopsis.


Assuntos
Parede Celular/metabolismo , Células Vegetais/metabolismo , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...