Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(44): 28451-28462, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36320502

RESUMO

The electronic, magnetic, optical and thermoelectric (TE) properties of Sn1-2x Mn x A x O2 (A = Mo/Tc) have been examined using density functional theory (DFT) based on the FP-LAPW approach. The results suggested that all the doped compounds show a half-metallic ferromagnet property with a 100% spin polarization at the Fermi level within GGA and mBJ. Moreover, doping SnO2 with double impurities reduces the bandgap. The reduced bandgaps are the result of impurity states which arise due to the Mn and Mo/Tc doping, leading to the shifts of the minima of the conduction band towards the Fermi energy caused by substantial hybridization between transition metals 3d-4d and O-2p states. Also, the (Mn, Mo) co-doped SnO2 system exhibits a ferromagnetic ground state which may be explained by the Zener double exchange mechanism. While the mechanism that controls the ferromagnetism in the (Mn, Tc) co-doped SnO2 system is p-d hybridization. Therefore, the role of this study is to illustrate the fact that half-metallic ferromagnet material is a good absorber of sunlight (visible range) and couples to give a combined effect of spintronics with optronics. Our analysis shows that Sn1-2x Mn x Mo x O2 and Sn1-2x Mn x Tc x O2 are more capable of absorbing sunlight in the visible range compared to pristine SnO2. In addition, we report a significant result for the thermoelectric efficiency ZT of ∼0.114 and ∼0.11 for Sn1-2x Mn x Mo x O2 and Sn1-2x Mn x Tc x O2, respectively. Thus, the coupling of these magnetic, optical, and thermoelectric properties in (Mn, A = Mo or Tc) co-doped SnO2 can predict that these materials are suitable for optoelectronic and thermoelectric systems.

2.
RSC Adv ; 11(12): 7096-7106, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35423212

RESUMO

From results of first-principles all-electron full-potential augmented spherical-wave calculations within a generalized gradient approximation, a materials design for half-metallic ferromagnetic semiconductors based on (Eu,Gd)-doped SnO2 rutile is proposed. Moreover, their half-metallic ferromagnetic properties are homogenous and energetically stable for different crystallographic directions. Therefore, the interatomic exchange interaction between the spins of double impurity ions is a long-range ferromagnetic interaction that is sharply weakened when the distance between Eu-Gd increases. The double impurities most likely substitute adjacent Sn sites and result in strong ferromagnetic interactions by p-f hybridization between rare earth 4f and Op states. There is great interest in the configuration that has the lowest energy difference, where the double impurity substitutes the nearest neighbor Sn sites along the z-axis of SnO2 rutile. Generalized gradient approximation GGA and GGA+U calculations were performed. According to our revPBE-GGA calculations, the ferromagnetic compound is capable of absorbing 96% from the visible light. Furthermore, the transport properties at room temperature ensure excellent electrical conductivity, low thermal conductivity, and the most optimal figure of merit (ZT), which leads to high thermoelectric performance. As the latter are closely related to free flow charge carriers, we can subsequently predict that the ferromagnetic alloy will be able to be a great power source for highly effective photovoltaic conversion in solar cells. Further experimentation will be necessary to obtain confirmation of our ab initio predictions.

3.
RSC Adv ; 10(58): 35505-35515, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35515646

RESUMO

The electronic structure and magneto-optic properties of TiO2 (rutile) doped with two concentrations of rare-earth (RE) elements are explored using a first-principle all-electron full-potential augmented spherical-wave method based on the PBEsol-GGA approximation, to examine their potential use as a spintronic and optoelectronic system. The results predict that all compounds exhibit half-metallic character, the only exception is by doping with Nd or that the material is magnetic but the cloud is still a half-metallic magnet. We also found that the localized level at the Fermi energy shifts to lower energy as the atomic number of the 4f-element increases. Consequently, the mechanism that controls the ferromagnetism in these systems has been proposed according to this positioning. The energy of the localized level due to Gd is sufficiently low to lie at the top of the valence band, while Eu produces a midgap state. However, the Fermi level was not noticed precisely at the middle of the energy gap. In contrast, the impurity states of the Nd-, Pm-, and Sm-dopants are close to the bottom of the conduction band of the host system. This allows electrons to be delocalized, and gives a higher scattering cross-section. Interestingly, the analysis of optical absorption and electrical conductivity emphasizes that this ferromagnetic DMS based on rare-earth elements has the power to be a promising spintronic device for visible light absorption in solar cells. Finally, the relationship between the mechanism that controls the ferromagnetism and the absorption efficiency of visible light is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...