Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549040

RESUMO

The individual Geoffroy's side-necked turtle, Phrynops cf. P. geoffroanus, was diagnosed postmortem with osteosarcoma associated with the forelimb through morphological and histological analysis. Osteosarcoma stands as the most prevalent primary malignant bone tumor in tetrapods. The tumor presents itself as a large mass in the distal epiphysis, characterized by spicular outgrowths and a rugose external texture. Histologically, the afflicted humerus displayed a high degree of vascularity and exhibited an extensive bone resorption process involving the medullary and endosteal regions. Notably, a clear transition between the bone marrow and cortical bone was absent, indicative of a remodeling process featuring Haversian bone system apposition. Additionally, the diaphyseal region displayed the progression of neoplastic bone tissue along the bone. For comparative purposes, we describe a humeral thin section from a healthy specimen revealing compact primary bone interrupted by cyclical growth marks which differs from the continuous growth observed in the neoplastic humerus. To assess the neoplastic bone growth rate at the mid-diaphysis level, phylogenetic eigenvector maps (PEM) were employed, utilizing osteocyte density and vascular density as explanatory variables. The findings indicated that the osteosarcoma exhibited a slow-growing nature, suggesting that the turtle had to live with this condition for years. As the neoplasia continued to expand, it likely led to disadvantages for the pathological Phrynops individual due to humeral deformity. Furthermore, malignancy was associated with angiogenesis and the invasion of the medullary region by neoplastic bone tissue, raising the likelihood of metastasis as an additional factor contributing to the individual's sickness. The presence of numerous vascular canals in the diaphyseal thin section suggested a low-grade central osteosarcoma. It is worth noting that osseous neoplasms are rarely documented in Testudines, making this case of osteosarcoma in a South American freshwater chelid specimen a unique and rare occurrence.

2.
Ann Anat ; 215: 8-19, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28935565

RESUMO

The coordinated activity of bone cells (i.e., osteoblasts and osteoclasts) during ontogeny underlies observed changes in bone growth rates (recorded in bone histology and bone microstructure) and bone remodeling patterns explaining the ontogenetic variation in bone size and shape. Histological cross-sections of the mandible in the C57BL/6J inbred mouse strain were recently examined in order to analyze the bone microstructure, as well as the directions and rates of bone growth according to the patterns of fluorescent labeling, with the aim of description of the early postnatal histomorphogenesis of this skeletal structure. Here we use the same approach to characterize the histomorphogenesis of the mandible in wild specimens of Mus musculus domesticus, from the second to the eighth week of postnatal life, for the first time. In addition, we assess the degree of similarity in this biological process between the wild specimens examined and the C57BL/6J laboratory strain. Bone microstructure data show that M. musculus domesticus and the C57BL/6J strain differ in the temporospatial pattern of histological maturation of the mandible, which particularly precludes the support of mandibular organization into the alveolar region and the ascending ramus modules at the histological level in M. musculus domesticus. The patterns of fluorescent labeling reveal that the mandible of the wild mice exhibits temporospatial differences in the remodeling pattern, as well as higher growth rates particularly after weaning, compared to the laboratory mice. Since the two mouse groups were reared under the same conditions, the dissimilarities found suggest the existence of differences between the groups in the genetic regulation of bone remodeling, probably as a result of their different genetic backgrounds. Despite the usual suitability of inbred mouse strains as model organisms, inferences from them to natural populations regarding bone growth should be made with caution.


Assuntos
Mandíbula/crescimento & desenvolvimento , Animais , Animais Selvagens , Desenvolvimento Ósseo , Remodelação Óssea , Feminino , Mandíbula/anatomia & histologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
3.
J Morphol ; 275(11): 1226-37, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24895174

RESUMO

To date, little is known about the structure of the cells and the fibrillar matrix of the globuli ossei, globular structures showing histochemical properties of an osseous tissue, sometimes found in the resorption front of the hypertrophied cartilage in many tetrapods, and easily observed in the long bones of the Urodele Pleurodeles waltl. Here, we present the results obtained from the appendicular long bones of metamorphosed juveniles and subadults using histological and histochemical methods and transmission electron microscopy. The distal part of the cone-shaped cartilage contains a heterogeneous cell population composed of the typical "light" hypertrophic chondrocytes and scarce "dark" hypertrophic chondrocytes. The "dark" chondrocytes display ultrastructural characteristics suggesting that they probably undergo degeneration through chondroptosis. However, in the hypertrophic, calcified cartilage close to the erosion front by the marrow, several noninvaded chondrocytic lacunae retained cells that do not show any morphological characteristics of degeneration and that cannot be identified as regular chondrocytes or osteocytes. These modified chondrocytes that have lost their regular morphology, appear to be active in the terminal cartilage and synthesize collagen fibrils of a peculiar diameter intermediate between the Type I collagen found in bone and the Type II collagen characteristic of cartilage. It is suggested that the local occurrence of globuli ossei is linked to a low rate of longitudinal growth as is the case in the long bones of postmetamorphic urodeles.


Assuntos
Osso e Ossos/anatomia & histologia , Condrócitos/ultraestrutura , Lâmina de Crescimento/ultraestrutura , Cartilagem Hialina/ultraestrutura , Osteócitos/ultraestrutura , Pleurodeles/anatomia & histologia , Animais , Desenvolvimento Ósseo , Diferenciação Celular , Matriz Extracelular , Extremidades/anatomia & histologia , Hipertrofia , Microscopia Eletrônica de Transmissão
4.
J Anat ; 220(5): 472-83, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22372819

RESUMO

The mandible of the house mouse, Mus musculus, is a model structure for the study of the development and evolution of complex morphological systems. This research describes the histomorphogenesis of the house mouse mandible and analyses its biological significance from the first to the eighth postnatal weeks. Histological data allowed us to test a hypothesis concerning modularity in this structure. We measured the bone growth rates by fluorescent labelling and identified the bone tissue types through microscopic analysis of histological cross-sections of the mandible during its postnatal development. The results provide evidence for a modular structure of the mouse mandible, as the alveolar region and the ascending ramus show histological differences throughout ontogeny. The alveolar region increases in length during the first two postnatal weeks by bone growth in the posterior region, while horizontally positioned incisors preclude bone growth in the anterior region. In the fourth postnatal week, growth dynamics shows a critical change. The alveolar region drifts laterally and the ramus becomes more vertical due to the medial growth direction of the coronoid region and the lateral growth of the ventral region of the ramus. Diet changes after weaning are probably involved in these morphological changes. In this way, the development of the masticatory muscles that insert on the ascending ramus may be particularly related to this shape modeling of the house mouse mandible.


Assuntos
Mandíbula/anatomia & histologia , Mandíbula/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Músculos da Mastigação/anatomia & histologia , Músculos da Mastigação/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese
5.
Biol Lett ; 5(5): 639-42, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19515655

RESUMO

The presence of bone growth marks reflecting annual rhythms in the cortical bone of non-avian tetrapods is now established as a general phenomenon. In contrast, ornithurines (the theropod group including modern birds and their closest relatives) usually grow rapidly in less than a year, such that no annual rhythms are expressed in bone cortices, except scarce growth marks restricted to the outer cortical layer. So far, cyclical growth in modern birds has been restricted to the Eocene Diatryma, the extant parrot Amazona amazonica and the extinct New Zealand (NZ) moa (Dinornithidae). Here we show the presence of lines of arrested growth in the long bones of the living NZ kiwi (Apteryx spp., Apterygidae). Kiwis take 5-6 years to reach full adult body size, which indicates a delayed maturity and a slow reproductive cycle. Protracted growth probably evolved convergently in moa and kiwi sometime since the Middle Miocene, owing to the severe climatic cooling in the southwest Pacific and the absence of mammalian predators.


Assuntos
Desenvolvimento Ósseo , Paleógnatas/crescimento & desenvolvimento , Animais , Diáfises/anatomia & histologia , Diáfises/crescimento & desenvolvimento , Nova Zelândia , Paleógnatas/anatomia & histologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...