Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(24): 6443-6450, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38865492

RESUMO

Germanium-lead (Ge-Pb) perovskites provide a promising solution for perovskite optoelectronic devices with reduced toxicity. However, Ge-Pb perovskite light-emitting diodes (PeLEDs) with >30 mol % Ge showed low emission efficiencies [Yang, D.; Zhang, G.; Lai, R.; Cheng, Y.; Lian, Y.; Rao, M.; Huo, D.; Lan, D.; Zhao, B.; Di, D. Germanium-Lead Perovskite Light-Emitting Diodes. Nat. Commun. 2021, 12 (1), 4295]. Here, we apply strain engineering to effectively improve the light emission efficiency and stability of Ge-Pb perovskite films and PeLEDs with 30 and 60 mol % Ge, through A-site modulation. The maximum external quantum efficiencies of the Ge-Pb PeLEDs with 30 and 60 mol % Ge are 8.5% and 3.0% at 3.32 mA cm-2 (∼922 cd m-2) and 0.53 mA cm-2 (∼60 cd m-2), respectively. Time-resolved transient absorption spectroscopy analysis of Ge-Pb perovskite films on different hole-transport layers shows that incorporating 30 mol % Ge into the perovskite with mixed A-site cations can effectively suppress trap-assisted recombination. Further analysis of their current density-voltage (J-V) curves reveals the efficiency loss mechanisms of Ge-Pb PeLEDs with high Ge fractions, indicating the possibility of further improvements.

2.
ACS Appl Mater Interfaces ; 16(7): 9012-9019, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38331712

RESUMO

Perovskite LEDs (PeLEDs) have emerged as a next-generation light-emitting technology. Recent breakthroughs were made in achieving highly stable near-infrared and green PeLEDs. However, the operational lifetimes (T50) of visible PeLEDs under high current densities (>10 mA cm-2) remain unsatisfactory (normally <100 h), limiting the possibilities in solid-state lighting and AR/VR applications. This problem becomes more pronounced for mixed-halide (e.g., red and blue) perovskite emitters in which critical challenges such as halide segregation and spectral instability are present. Here, we demonstrate bright and stable red PeLEDs based on mixed-halide perovskites, showing measured T50 lifetimes of up to ∼357 h at currents of ≥25 mA cm-2, a record for the operational stability of visible PeLEDs under high current densities. The devices produce intense and stable emission with a maximum luminance of 28,870 cd m-2 (radiance: 1584 W sr-1 m-2), which is record-high for red PeLEDs. Key to this demonstration is the introduction of sulfonamide, a dipolar molecular stabilizer that effectively interacts with the ionic species in the perovskite emitters. It suppresses halide segregation and migration into the charge-transport layers, resulting in enhanced stability and brightness of the mixed-halide PeLEDs. These results represent a substantial step toward bright and stable PeLEDs for emerging applications.

3.
Nat Commun ; 13(1): 3845, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788132

RESUMO

For a light-emitting diode (LED) to generate light, the minimum voltage required is widely considered to be the emitter's bandgap divided by the elementary charge. Here we show for many classes of LEDs, including those based on perovskite, organic, quantum-dot and III-V semiconductors, light emission can be observed at record-low voltages of 36-60% of their bandgaps, exhibiting a large apparent energy gain of 0.6-1.4 eV per photon. For 17 types of LEDs with different modes of charge injection and recombination (dark saturation currents of ~10-39-10-15 mA cm-2), their emission intensity-voltage curves under low voltages show similar behaviours. These observations and their consistency with the diode simulations suggest the ultralow-voltage electroluminescence arises from a universal origin-the radiative recombination of non-thermal-equilibrium band-edge carriers whose populations are determined by the Fermi-Dirac function perturbed by a small external bias. These results indicate the potential of low-voltage LEDs for communications, computational and energy applications.

4.
Nat Commun ; 12(1): 4295, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257298

RESUMO

Reducing environmental impact is a key challenge for perovskite optoelectronics, as most high-performance devices are based on potentially toxic lead-halide perovskites. For photovoltaic solar cells, tin-lead (Sn-Pb) perovskite materials provide a promising solution for reducing toxicity. However, Sn-Pb perovskites typically exhibit low luminescence efficiencies, and are not ideal for light-emitting applications. Here we demonstrate highly luminescent germanium-lead (Ge-Pb) perovskite films with photoluminescence quantum efficiencies (PLQEs) of up to ~71%, showing a considerable relative improvement of ~34% over similarly prepared Ge-free, Pb-based perovskite films. In our initial demonstration of Ge-Pb perovskite LEDs, we achieve external quantum efficiencies (EQEs) of up to ~13.1% at high brightness (~1900 cd m-2), a step forward for reduced-toxicity perovskite LEDs. Our findings offer a new solution for developing eco-friendly light-emitting technologies based on perovskite semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...