Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750840

RESUMO

Developing flame retardant cotton fabrics (CF) is crucial for minimizing the harm caused by fires to people. To improve the flame retardancy of CF, this paper has synthesized a novel flame retardant called diboraspiro tetra phosphonate ammonium salt (N-PDBDN). The structure of N-PDBDN has been analyzed using FT-IR and NMR. Treating CF with N-PDBDN can increase the limiting oxygen index (LOI) to 36.2 % with a weight gain of 10.1 %. Moreover, even after undergoing 50 laundering cycles (LCs), the LOI remains at 27.1 %, indicating good flame retardancy and durability. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) show the presence of P and N elements on N-PDBDN treated CF, suggesting successful bonding between N-PDBDN and cellulose. Thermogravimetric analysis (TGA) results demonstrate that the addition of N-PDBDN significantly enhances the thermal stability and carbon formation ability of CF. Furthermore, cone calorimetry tests reveal reduced heat release rates (HRR), prolonged time to ignition (TTI), and 38 % lower total heat release (THR) in CF treated with N-PDBDN compared with pure cotton. Finally, a potential flame retardant mechanism involving N-PDBDN is proposed. These findings indicate that incorporating an ammonium phosphate group into CF can effectively improve the flame retardancy and durability.


Assuntos
Fibra de Algodão , Retardadores de Chama , Têxteis , Nitrogênio/química , Fósforo/química , Espectroscopia de Infravermelho com Transformada de Fourier , Organofosfonatos/química , Termogravimetria
2.
Angew Chem Int Ed Engl ; 61(41): e202209441, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36002933

RESUMO

Tetra-ortho-substituted, heteroaryl and cyclic azobenzenes have emerged as three key strategies on morphology design of photoswitch to diversify controllability. Cyclic azobenzene is of particular utilization in photo-energy conversion due to rigid and ring-strain structure. Despite the well-recognized diazocine, the photo-switching properties of seven-membered cyclic azobenzenes (diazepines) have yet been exploited. Herein, we report a family of dibenzo[b,f][1,4,5]chalcogenadiazepines (DBChDs) and their T-type photo-switching nature with tunable relaxation rate. Based on experiments together with DFT calculations, we found that an unsymmetric 2-bithiophenyl-dibenzo[b,f][1,4,5]thiadiazepine exhibited an efficient response to 445 nm laser stimulation (quantum efficiency, ΦZ→E =0.71) with millisecond relaxation half-life (t1/2 =40 ms). Photo-energy transduction efficiency was also exceptionally high with 29.1 % converted into ring-strain energy mainly loaded on azo π-bond.


Assuntos
Compostos Azo , Luz , Compostos Azo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...