Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37834452

RESUMO

ß-Elemene (C15H24), a sesquiterpenoid compound isolated from the volatile oil of Curcuma wenyujin, has been proven to be effective for multiple cancers and is widely used in clinical treatment. Unfortunately, the ß-elemene content in C. wenyujin is very low, which cannot meet market demands. Our previous research showed that methyl jasmonate (MeJA) induced the accumulation of ß-elemene in C. wenyujin. However, the regulatory mechanism is unclear. In this study, 20 jasmonate ZIM-domain (JAZ) proteins in C. wenyujin were identified, which are the core regulatory factors of the JA signaling pathway. Then, the conservative domains, motifs composition, and evolutionary relationships of CwJAZs were analyzed comprehensively and systematically. The interaction analysis indicated that CwJAZs can form homodimers or heterodimers. Fifteen out of twenty CwJAZs were significantly induced via MeJA treatment. As the master switch of the JA signaling pathway, the CwMYC2-like protein has also been identified and demonstrated to interact with CwJAZ2/3/4/5/7/15/17/20. Further research found that the overexpression of the CwMYC2-like gene increased the accumulation of ß-elemene in C. wenyujin leaves. Simultaneously, the expressions of HMGR, HMGS, DXS, DXR, MCT, HDS, HDR, and FPPS related to ß-elemene biosynthesis were also up-regulated by the CwMYC2-like protein. These results indicate that CwJAZs and the CwMYC2-like protein respond to the JA signal to regulate the biosynthesis of ß-elemene in C. wenyujin.


Assuntos
Curcuma , Sesquiterpenos , Curcuma/metabolismo , Sesquiterpenos/farmacologia , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo
2.
PLoS One ; 17(6): e0270309, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35737688

RESUMO

Curcuma wenyujin is the source plant of three traditional Chinese medicines, which have been widely used in clinical treatment over 1000 years. The content of terpenes, the major medicinal active ingredients, is relatively low in this plant. Studies have shown that MeJA can promote terpenes biosynthesis in plants. However, the mechanism underlying the effect of MeJA in C. wenyujin remains unclear. In this work, the transcriptome of C. wenyujin leaves with MeJA treatment was analyzed to elucidate the regulation mechanism of MeJA-mediated terpene biosynthesis. Based on the RNA-seq data, 7,246 unigenes were differentially expressed with MeJA treatment. Expression pattern clustering of DEGs revealed that unigenes, related to JA biosynthesis and signal transduction, responded to exogenous MeJA stimulation on the early stage and maintained throughout the process. Subsequently, unigenes related to terpene biosynthesis pathway showed a significant up-regulation with 6 h treatment. The analysis results suggested that MeJA induced the expression of JA biosynthesis genes (such as LOXs, AOSs, AOCs, OPRs, and MFPs) and JA signal transduction core genes (JAZs and MYCs) to activate JA signaling pathway. Meanwhile, downstream JA-responsive genes presented up-regulated expression levels such as AACT, HMGSs, HMGRs, DXSs, DXRs, MCTs, HDSs, and HDRs, thus promoting terpenes biosynthesis. The transcriptional expressions of these genes were validated by qRT-PCR. In addition, six CwTPS genes in response to MeJA were identified. With MeJA treatment, the expression levels of CwTPSs were increased as well as those of the transcription factors MYB, NAC, bZIP, WRKY, AP2/ERF, and HLH. These TFs might potentially regulate terpenes biosynthesis. These results provide insights for regulation mechanism of terpenes biosynthesis.


Assuntos
Curcuma , Reguladores de Crescimento de Plantas , Acetatos/farmacologia , Curcuma/genética , Curcuma/metabolismo , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Terpenos/metabolismo , Transcriptoma
3.
Front Genet ; 13: 894928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547255

RESUMO

MYB superfamily is one of the most abundant families in plants, and plays critical role in plant growth, development, metabolism regulation, and stress response. Curcuma wenyujin is the main source plant of three traditional Chinese medicines, which are widely used in clinical treatment due to its diverse pharmacological activities. In present study, 88 CwMYBs were identified and analyzed in C. wenyujin, including 43 MYB-related genes, 42 R2R3-MYB genes, two 3R-MYB genes, and one 4R-MYB gene. Forty-three MYB-related proteins were classified into several types based on conserved domains and specific motifs, including CCA1-like type, R-R type, Myb-CC type, GARP-like type, and TBR-like type. The analysis of motifs in MYB DBD and no-MYB regions revealed the relevance of protein structure and function. Comparative phylogeny analysis divided 42 R2R3-MYB proteins into 19 subgroups and provided a reference for understanding the functions of some CwMYBs based on orthologs of previously characterized MYBs. Expression profile analysis of CwMYB genes revealed the differentially expressed genes responding to various abiotic stresses. Four candidate MYB genes were identified by combining the results of phylogeny analysis and expression analysis. CwMYB10, CwMYB18, CwMYB39, and CwMYB41 were significantly induced by cold, NaCl, and MeJA stress treatments. CwMYB18 and CwMYB41 were proved as regulators with activity of transcriptional activation, whereas CwMYB39 and CwMYB10 were not. They may participate in the response to abiotic stresses through different mechanisms in C. wenyujin. This study was the first step toward understanding the CwMYB family and the response to abiotic stresses in C. wenyujin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...