Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 904: 166933, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37709096

RESUMO

China's takeaway food industry is growing rapidly, and bringing unprecedented demand for plastic packaging, which results in serious plastic pollution and increasing emissions of plasticizers of phthalate esters (PAEs) and greenhouse gases (GHGs). This study assesses the current and future situation of plastic usage for takeaway food packaging in China, and also analyzes the PAEs and GHG emissions brought by these plastics under different scenarios. From 2010 to 2020, the plastic usage grew from 2.92 to 101 × 104 tons, and brought 112-3845 kg PAEs and 43.6-1438 kt CO2e GHG emissions. Their distribution exhibited a clear 'two-line' pattern: higher features mostly located in Beijing-Guangzhou and Beijing-Shanghai railways. The socio-economic factors model performed better than the growth rate model for plastic usage prediction from 2021 to 2060. It is predicted that 40.6 Mt. plastic would be consumed in 2060, and they will bring 155 tons PAEs and 37.0 Mt. CO2e GHGs. At that time, biodegradable plastic replaced or plastic cycling cannot significantly contribute to national carbon reduction, unless using a temperature change of 2 °C scenario. Our work improves the understanding of PAEs and GHG emission from plastic pollution, and provides insight into long-term dynamics in the plastics management of takeaway food industry.


Assuntos
Poluição Ambiental , Gases de Efeito Estufa , China , Plastificantes , Indústria Alimentícia , Plásticos
2.
J Hazard Mater ; 414: 125527, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33676249

RESUMO

In this study, aerobic granular sludge (AGS) was operated under high levels of ammonium for removing three fluoroquinolones (FQs), i.e., ciprofloxacin (CFX), ofloxacin (OFX), and norfloxacin (NFX) at 3, 300, and 900 µg/L, respectively. Two key objectives were to investigate the differential distribution of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in sludge fractions and to evaluate correlations between ARGs and MGEs to nitrifying and denitrifying bacteria. AGS showed excellent stability under the exposure of FQs, with nitrite-oxidizing bacteria (NOB) more sensitive to FQs than ammonium-oxidizing bacteria (AOB). Specific oxygen utilization rates (SOUR) showed a reduction of 26.9% for NOB but only 4.0% of the reduced activity of AOB by 3 µg/L FQs. AGS performed better removal efficiencies for CFX and NFX than OFX, and the efficiencies increased with their elevated concentrations, except at 900 µg/L FQs. The elevated FQ concentrations led to a significant enrichment of intI1 and genus Thauera, while qnrD and qnrS showed no accumulation. Compared to nitrifiers, FQs relevant ARGs and the intI1 gene preferred to exist in denitrifiers, and the abundance of denitrifiers behaved a decreasing trend with the sludge size. Two quinoline-degrading bacteria were found in the AGS system, i.e., Alicycliphilus and Brevundimonas, possibly carrying qnrS and qnrD, respectively. Their relative abundance increased with the sludge size, which was 2.18% in sludge <0.5 mm and increased to 3.70% in sludge >2.0 mm, suggesting that the AGS may be a good choice in treating FQs-containing wastewater.


Assuntos
Microbiota , Esgotos , Antibacterianos/farmacologia , Reatores Biológicos , Resistência Microbiana a Medicamentos/genética , Fluoroquinolonas/farmacologia , Microbiota/genética , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...