Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 598
Filtrar
1.
Int J Biol Macromol ; 273(Pt 2): 132854, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838879

RESUMO

Depression is a neuropsychiatric disorder characterized by persistent pleasure loss and behavioral despair. However, the potential mechanisms and therapeutic targets for depression treatment remain unclear. Therefore, identifying the underlying pathogenesis of depression would promote the development of novel treatment and provide effective targets for antidepressant drugs. In this study, proteomics analysis showed that the expression level of phosphatase and actin regulator 4 (Phactr4) was significantly increased in the CA1 hippocampus of depressed rats. The upregulated Phactr4 might induce dysfunction of the synaptic structure via suppressing the p-LIMK/p-Cofilin signaling pathway, and promote neuroinflammation via activating the NF-κB/NLRP3 pathway, which ultimately contributes to the pathogenesis of depression. In contrast, the downregulation of Phactr4 in hippocampal CA1 of depressed rats alleviated depression-like behaviors, along with reducing neuroinflammation and improving synaptic plasticity. In conclusion, these findings provide evidence that Phactr4 plays an important role in regulating neuroinflammatory response and impairment of synaptic plasticity, effects seem to involve in the pathogenesis of depression, and Phactr4 may serve as a potential target for antidepressant treatment.

2.
J Hepatol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763358

RESUMO

The hepatic sinusoids are composed of liver sinusoidal endothelial cells (LSEC), which are surrounded by hepatic stellate cells (HSC) and contain liver-resident macrophages called Kupffer cells, and other patrolling immune cells. All these cells communicate with each other and with hepatocytes to maintain sinusoidal homeostasis and a spectrum of hepatic functions under healthy conditions. Sinusoidal homeostasis is disrupted by metabolites, toxins, viruses, and other pathological factors, leading to liver injury, chronic liver diseases, and liver cirrhosis. Alterations in hepatic sinusoids are linked to fibrosis progression and portal hypertension. LSECs are crucial regulators of cellular crosstalk within their microenvironment via angiocrine signaling. This review discusses the mechanisms by which angiocrine signaling orchestrates sinusoidal homeostasis, as well as the development of liver diseases. Here, we summarize the crosstalk between LSECs, HSCs, hepatocytes, cholangiocytes, and immune cells in health and disease and comment on potential novel therapeutic methods for treating liver diseases.

3.
Heliyon ; 10(9): e30859, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38774073

RESUMO

Canine circovirus (CanineCV), which is a new mammalian circovirus first reported in the United States in 2012, mainly causes diarrhea and vomiting in dogs. As CanineCV evolves and new subtypes emerge, there is an urgent need for new detection technologies to improve the sensitivity and detection rates of viruses in complex scenarios. A chip digital PCR(cdPCR) assay was established for the detection of CanineCV in this study. The results showed good reproducibility, specificity and a linear relationship; the minimum detection limit of CanineCV by cdPCR was 6.62 copies/µL, which is 10 times more sensitive than quantitative real-time PCR (qPCR). The qPCR-positive detection rate was 1 %, while CanineCV cdPCR (2.1 %) exhibited a greater positive detection rate. Fifteen complete genomes were sequenced and subdivided into CanineCV-1 and CanineCV-3. In conclusion, we developed a rapid, reliable, and specific cdPCR method for screening and monitoring canine CV.

4.
Transl Androl Urol ; 13(4): 537-547, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38721285

RESUMO

Background: Inflammation, fibrosis and autophagy represent closely related factors associated with the pathogenesis of diabetes mellitus erectile dysfunction (DMED). In this study, the therapeutic effect of nitro-oleic acid (NO2-OA) in a streptozotocin-induced rat model of DMED was evaluated. Methods: Sixty rats were randomly divided into four groups: control, DMED, DMED + Vehicle and DMED + NO2-OA. DMED was induced by intraperitoneal injection of streptozotocin in male rats. Blood glucose and body weight were measured every 2 weeks. After 4 weeks of NO2-OA treatment, erectile function was measured by electrical stimulation of cavernous nerve (CN). Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), immunofluorescence and Masson's trichrome staining were used to verify the related factors and protein expression levels. Results: We found that NO2-OA could significantly increase erectile pressure in the corpus cavernosum of DMED rats. Results of western blot, confocal immunofluorescence and qRT-PCR assays revealed that NO2-OA significantly reduced inflammatory factors and the expression of nuclear factor kappa B (NF-κB). In addition, Masson staining results indicated that NO2-OA significantly reduced the display of fibrotic tissue in the corpus cavernosum. These beneficial effects may be related to reductions in the expression of transforming growth factor-ß1 (TGF-ß1) and connective tissue growth factor (CTGF) and the increase in the expression of α-smooth muscle actin (α-SMA). Finally, NO2-OA treatment increased the expression of the autophagy marker, LC3, while P62 was decreased, effects suggesting that one of the underlying mechanisms of NO2-OA may involve an activation of the PI3K/AKT/mTOR pathway to enhance the capacity for autophagy within this tissue. Conclusions: NO2-OA enhances erectile function within a rat model of DMED by inhibiting inflammation and fibrosis along with activating autophagy.

5.
Biochem Biophys Res Commun ; 717: 150061, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718570

RESUMO

Epithelial mesenchymal transition (EMT) is a critical process implicated in the pathogenesis of retinal fibrosis and the exacerbation of diabetic retinopathy (DR) within retinal pigment epithelium (RPE) cells. Apigenin (AP), a potential dietary supplement for managing diabetes and its associated complications, has demonstrated inhibitory effects on EMT in various diseases. However, the specific impact and underlying mechanisms of AP on EMT in RPE cells remain poorly understood. In this study, we have successfully validated the inhibitory effects of AP on high glucose-induced EMT in ARPE-19 cells and diabetic db/db mice. Notably, our findings have identified CBP/p300 as a potential therapeutic target for EMT in RPE cells and have further substantiated that AP effectively downregulates the expression of EMT-related genes by attenuating the activity of CBP/p300, consequently reducing histone acetylation alterations within the promoter region of these genes. Taken together, our results provide novel evidence supporting the inhibitory effect of AP on EMT in RPE cells, and highlight the potential of specifically targeting CBP/p300 as a strategy for inhibiting retinal fibrosis in the context of DR.


Assuntos
Apigenina , Transição Epitelial-Mesenquimal , Glucose , Histonas , Epitélio Pigmentado da Retina , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Animais , Apigenina/farmacologia , Acetilação/efeitos dos fármacos , Humanos , Glucose/metabolismo , Glucose/toxicidade , Histonas/metabolismo , Linhagem Celular , Camundongos , Fatores de Transcrição de p300-CBP/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Retinopatia Diabética/tratamento farmacológico , Proteína p300 Associada a E1A/metabolismo , Masculino , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteína de Ligação a CREB/metabolismo , Proteína de Ligação a CREB/genética
6.
Food Chem ; 448: 139164, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574717

RESUMO

The use of soy protein isolate (SPI) nanoparticles as a stabilizer in nano-emulsion systems has garnered significant interest. While metal-phenolic networks (MPNs) have been explored for their multifunctional surface modification capabilities, their integration with food protein-based delivery systems remains less explored. In this study, we attempt to develop a novel strategy to encapsulate cinnamaldehyde using MPNs (EGCG-Fe3+) with self-assembling soy protein nanoparticles (SE-Fe NPs) as a stabilizer for nano-emulsions. UV, Raman, and X-ray photoelectron spectroscopy analyses demonstrated that SE-Fe NPs were generated through metal-phenolic coordination and covalent interactions. SE-Fe NPs had a narrower particle size distribution and enhanced radical scavenging (up to 3.35-fold), as well as thermal stability. Furthermore, the smaller droplet size, higher modulus, higher cinnamaldehyde encapsulation efficiency (from 63.5% to 84.2%), and improved bio-accessibility of SE-Fe NPs stabilized nano-emulsions delivery system demonstrated in this study shows promising future applications in the food industry.

7.
Chin Med ; 19(1): 63, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654354

RESUMO

BACKGROUND: Diabetic kidney disease (DKD) is a microvascular complication of diabetes mellitus, contributing to end-stage renal disease with limited treatment options. The development of DKD is attributed to podocyte injury resulting from abnormal podocyte autophagy. Consequently, the restoration of podocyte autophagy is deemed a practicable approach in the treatment of DKD. METHODS: Diabetic mice were induced by streptozotocin and high-fat diet feeding. Following 8 weeks of "QN" agarwood treatment, metrics such as albuminuria, serum creatinine (Scr), and blood urea nitrogen (BUN) were evaluated. Renal histological lesions were evaluated by H&E, PAS, Masson, and Sirius red staining. Evaluation of the effects of "QN" agarwood on renal inflammation and fibrosis in DKD mice through WB, q-PCR, and IHC staining analysis. Cytoscape 3.7.1 was used to construct a PPI network. With the DAVID server, the gene ontology (GO) functional annotation and the Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways of the target enrichment were performed. Molecular docking and binding affinity calculations were conducted using AutoDock, while PyMOL software was employed for visualizing the docking results of active compounds and protein targets. RESULTS: The results of this study show that "QN" agarwood reduced albuminuria, Scr, and BUN in DKD mice, and improved the renal pathological process. Additionally, "QN" agarwood was observed to downregulate the mRNA and protein expression levels of pro-inflammatory and pro-fibrotic factors in the kidneys of DKD mice. Network pharmacology predicts that "QN" agarwood modulates the epidermal growth factor receptor (EGFR) signaling pathway. "QN" agarwood can increase the expression of LC3B and Nphs1 in DKD mice while reducing the expression of EGFR. CONCLUSION: The present study demonstrated that "QN" agarwood ameliorated renal injury in DKD by targeting EGFR and restoring podocyte autophagy.

8.
Food Chem X ; 22: 101365, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623506

RESUMO

This review focuses on changes in nutrition and functional properties of protein-rich foods, primarily attributed to alterations in protein structures. We provide a comprehensive overview and comparison of commonly used laboratory methods for protein structure identification, aiming to offer readers a convenient understanding of these techniques. The review covers a range of detection technologies employed in food protein analysis and conducts an extensive comparison to identify the most suitable method for various proteins. While these techniques offer distinct advantages for protein structure determination, the inherent complexity of food matrices presents ongoing challenges. Further research is necessary to develop and enhance more robust detection methods to improve accuracy in protein conformation and structure analysis.

9.
Bioinspir Biomim ; 19(4)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38631361

RESUMO

This paper presents a novel approach for designing a freeform bending-resistant structure from the combination of explicit discrete component-based topology optimization (TO) and the porcupine quill-inspired features. To embed the porcupine quill's features into the TO formulations, the method involves constructing discrete components at various scales to imitate features including solid shell, stochastically distributed pores, and graded stiffeners. The components are iteratively updated, and the optimization process allows for the grading of quill-inspired features while achieving optimal structural compliance under bending loads. The proposed approach is demonstrated to be effective through the resolution of Messershmitt-Bolkow-Blohm (MBB) beam designs, parameterized studies of geometric parameters, and numerical validation of long-span and short-span quill-inspired beam designs. By examining the von Mises stress distribution, the study highlights the mitigation of material yielding at the shell region brought by the geometric features of porcupine quills, leading to the potential theory support for the bending resistance. The optimized MBB beams are manufactured using the material extrusion technique, and three-point bending tests are conducted to explore the failure mitigation capability of the quill-inspired beam under large deformation. Consequently, the study concludes that the proposed quill-inspired component-based TO approach can design a structure with excellent bending resistance according to the improved energy absorption as well as increased deformation after reaching 75% peak load.


Assuntos
Porcos-Espinhos , Porosidade , Porcos-Espinhos/fisiologia , Porcos-Espinhos/anatomia & histologia , Animais , Estresse Mecânico , Materiais Biomiméticos/química , Biomimética/métodos , Simulação por Computador
11.
Sci Total Environ ; 930: 172515, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642759

RESUMO

The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.


Assuntos
Carvão Vegetal , Compostagem , Substâncias Húmicas , Nitrogênio , Fósforo , Fósforo/análise , Carvão Vegetal/química , Nitrogênio/análise , Compostagem/métodos , Microbiologia do Solo , Medicamentos de Ervas Chinesas/química , Solo/química
12.
Asian J Surg ; 47(6): 2589-2597, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604849

RESUMO

BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) is a highly heterogeneous liver tumor. The associations between histopathological feature and prognosis of ICC are limited. The present study aimed to investigate the prognostic significance of glandular structure and tumor budding in ICC. METHODS: Patients received radical hepatectomy for ICC were included. Glandular structure and tumor budding were detected by Hematoxylin-eosin staining. The Kaplan-Meier method and the Cox proportional hazards regression model were used to calculate the survival and hazard ratio. Based on the results of multivariate analysis, nomograms of OS and DFS were constructed. C-index and Akaike information criterion (AIC) were used to assess accuracy of models. RESULTS: A total of 323 ICC patients who underwent surgery were included in our study. Glandular structure was associated with worse overall survival (OS) [hazard ratio (HR): 2.033, 95% confidence interval (CI): 1.047 to 3.945] and disease-free survival (DFS) [HR: 1.854, 95% CI: 1.082 to 3.176]. High tumor budding was associated with worse DFS [HR: 1.636, 95%CI: 1.060 to 2.525]. Multivariate analysis suggested that glandular structure, tumor number, lymph node metastasis, and CA19-9 were independent risk factors for OS. Independent predictor factors for DFS were tumor budding, glandular structure, tumor number, and lymph node metastasis. The c-index (0.641 and 0.642) and AIC (957.69 and 1188.52) showed that nomograms of OS and DFS have good accuracy. CONCLUSION: High tumor budding and glandular structure are two important histopathological features that serve as prognostic factors for ICC patients undergoing hepatectomy.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Hepatectomia , Humanos , Colangiocarcinoma/patologia , Colangiocarcinoma/mortalidade , Colangiocarcinoma/cirurgia , Masculino , Feminino , Neoplasias dos Ductos Biliares/patologia , Neoplasias dos Ductos Biliares/cirurgia , Neoplasias dos Ductos Biliares/mortalidade , Pessoa de Meia-Idade , Prognóstico , Idoso , Nomogramas , Adulto , Modelos de Riscos Proporcionais , Fatores de Risco , Taxa de Sobrevida , Metástase Linfática
13.
Molecules ; 29(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675679

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the liver component of a cluster of conditions, while its subtype, nonalcoholic steatohepatitis (NASH), emerges as a potentially progressive liver disorder that harbors the risk of evolving into cirrhosis and culminating in hepatocellular carcinoma (HCC). NASH and cardiovascular disease (CVD) have common risk factors, but compared to liver-related causes, the most common cause of death in NASH patients is CVD. Within the pharmacological armamentarium, statins, celebrated for their lipid-modulating prowess, have now garnered attention for their expansive therapeutic potential in NASH. Evidence from a plethora of studies suggests that statins not only manifest anti-inflammatory and antifibrotic properties but also impart a multifaceted beneficial impact on hepatic health. In this review, we used "statin", "NAFLD", "NASH", and "CVD" as the major keywords and conducted a literature search using the PubMed and Web of Science databases to determine the safety and efficacy of statins in patients and animals with NASH and NAFLD, and the mechanism of statin therapy for NASH. Simultaneously, we reviewed the important role of the intestinal microbiota in statin therapy for NASH, as it is hoped that statins will provide new insights into modulating the harmful inflammatory microbiota in the gut and reducing systemic inflammation in NASH patients.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Hepatopatia Gordurosa não Alcoólica , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Resultado do Tratamento , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/etiologia
14.
Sheng Li Xue Bao ; 76(2): 266-288, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38658376

RESUMO

Irisin, a peptide produced during exercise, is believed to play a role in regulating energy levels within the body. Moreover, Irisin has the ability to traverse the blood-brain barrier and engage in various pathophysiological processes within the central nervous system. An increasing body of research identifies Irisin as a significant therapeutic target for neurodegenerative diseases, indicating a strong link between Irisin and the development of cognitive impairments. In this paper, we present a concise review of effects of different types of exercise on Irisin production, and the mechanisms underlying the Irisin's intervention in various diseases including metabolic diseases, kidney injury and depression. Following this, we delve into an in-depth exploration of its role in modulating cognitive dysfunction among patients with Alzheimer's disease (AD), focusing on recent advancements in three critical areas: neuroinflammation, mitochondrial dysfunction, and protein misfolding. Finally, we put forth 3 hypotheses: (1) exercise-induced fibronectin type III domain containing protein 5 (FNDC5) stimulation and subsequent Irisin cleavage may be associated with the stress response in energy metabolism; (2) Irisin, as a myokine, likely plays a role in mitochondrial repair mechanisms to ameliorate cognitive impairment in AD patients; (3) Irisin is a homeostatic factor that maintains energy homeostasis and is closely related to the dynamic stability of the body's internal environment.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Exercício Físico , Fibronectinas , Humanos , Doença de Alzheimer/metabolismo , Fibronectinas/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Exercício Físico/fisiologia , Animais , Mitocôndrias/metabolismo
15.
Phytomedicine ; 128: 155477, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489890

RESUMO

BACKGROUND: The alleviating effect of paeoniflorin (Pae) on liver fibrosis has been established; however, the molecular mechanism and specific target(s) underlying this effect remain elusive. PURPOSE: This study was to investigate the molecular mechanism underlying the regulatory effect of Pae on hepatic stellate cells (HSCs) activation in liver fibrosis, with a specific focus on the role of Pae in modulating histone methylation modifications. METHODS: The therapeutic effect of Pae was evaluated by establishing in vivo and in vitro models of carbon tetrachloride (CCl4)-induced mice and transforming growth factor ß1 (TGF-ß1)-induced LX-2 cells, respectively. Molecular docking, surface plasmon resonance (SPR), chromatin immunoprecipitation-quantitative real time PCR (ChIP-qPCR) and other molecular biological methods were used to clarify the molecular mechanism of Pae regulating HSCs activation. RESULTS: Our study found that Pae inhibited HSCs activation and histone trimethylation modification in liver of CCl4-induced mice and LX-2 cells. We demonstrated that the inhibitory effect of Pae on the activation of HSCs was dependent on peroxisome proliferator-activated receptor γ (PPARγ) expression and enhancer of zeste homolog 2 (EZH2). Mechanistically, Pae directly binded to EZH2 to effectively suppress its enzymatic activity. This attenuation leaded to the suppression of histone H3K27 trimethylation in the PPARγ promoter region, which induced upregulation of PPARγ expression. CONCLUSION: This investigative not only sheds new light on the precise targets that underlie the remission of hepatic fibrogenesis induced by Pae but also emphasizes the critical significance of EZH2-mediated H3K27 trimethylation in driving the pathogenesis of liver fibrosis.


Assuntos
Tetracloreto de Carbono , Proteína Potenciadora do Homólogo 2 de Zeste , Glucosídeos , Células Estreladas do Fígado , Histonas , Cirrose Hepática , Monoterpenos , PPAR gama , Animais , Glucosídeos/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , PPAR gama/metabolismo , Monoterpenos/farmacologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Histonas/metabolismo , Camundongos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Masculino , Humanos , Camundongos Endogâmicos C57BL , Metilação , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular , Simulação de Acoplamento Molecular
16.
Front Immunol ; 15: 1337105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481992

RESUMO

Background: The molecular mechanisms of hepatic fibrosis (HF), closely related to autophagy, remain unclear. This study aimed to investigate autophagy characteristics in HF. Methods: Gene expression profiles (GSE6764, GSE49541 and GSE84044) were downloaded, normalized, and merged. Autophagy-related differentially expressed genes (ARDEGs) were determined using the limma R package and the Wilcoxon rank sum test and then analyzed by GO, KEGG, GSEA and GSVA. The infiltration of immune cells, molecular subtypes and immune types of healthy control (HC) and HF were analyzed. Machine learning was carried out with two methods, by which, core genes were obtained. Models of liver fibrosis in vivo and in vitro were constructed to verify the expression of core genes and corresponding immune cells. Results: A total of 69 ARDEGs were identified. Series functional cluster analysis showed that ARDEGs were significantly enriched in autophagy and immunity. Activated CD4 T cells, CD56bright natural killer cells, CD56dim natural killer cells, eosinophils, macrophages, mast cells, neutrophils, and type 17 T helper (Th17) cells showed significant differences in infiltration between HC and HF groups. Among ARDEGs, three core genes were identified, that were ATG5, RB1CC1, and PARK2. Considerable changes in the infiltration of immune cells were observed at different expression levels of the three core genes, among which the expression of RB1CC1 was significantly associated with the infiltration of macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell. In the mouse liver fibrosis experiment, ATG5, RB1CC1, and PARK2 were at higher levels in HF group than those in HC group. Compared with HC group, HF group showed low positive area in F4/80, IL-17 and CD56, indicating decreased expression of macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell. Meanwhile, knocking down RB1CC1 was found to inhibit the activation of hepatic stellate cells and alleviate liver fibrosis. Conclusion: ATG5, RB1CC1, and PARK2 are promising autophagy-related therapeutic biomarkers for HF. This is the first study to identify RB1CC1 in HF, which may promote the progression of liver fibrosis by regulating macrophage, Th17 cell, natural killer cell and CD56dim natural killer cell.


Assuntos
Cirrose Hepática , Macrófagos , Camundongos , Animais , Fibrose , Macrófagos/patologia , Autofagia/genética , Aprendizado de Máquina
17.
J Asian Nat Prod Res ; 26(7): 812-823, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38477295

RESUMO

Nineteen isosteviol derivatives were designed and synthesized by C-16, C-19 and D-ring modifications of isosteviol. These compounds were screened for their cytotoxic activities against Hela and A549 cells in vitro. Among them, the inhibitory effect of compounds 3b and 16 on Hela cells was comparable to that of the positive control gefitinib, and the compounds 3b (IC50=7.84 ± 0.84 µM) and 7a (IC50=6.89 ± 0.33 µM) exhibited significant cytotoxicity superior to gefitinib (IC50=11.02 ± 3.27 µM) against A549 cells.


Assuntos
Diterpenos do Tipo Caurano , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/síntese química , Diterpenos do Tipo Caurano/química , Estrutura Molecular , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Células A549 , Gefitinibe/farmacologia , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Quinazolinas/farmacologia , Quinazolinas/química , Quinazolinas/síntese química
18.
Chin Med ; 19(1): 21, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310315

RESUMO

Traditional Chinese medicine (TCM) has been widely used for several centuries for metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). At present, NAFLD has become the most prevalent form of chronic liver disease worldwide and can progress to non-alcoholic steatohepatitis (NASH), cirrhosis, and even hepatocellular carcinoma. However, there is still a lack of effective treatment strategies in Western medicine. The development of NAFLD is driven by multiple mechanisms, including genetic factors, insulin resistance, lipotoxicity, mitochondrial dysfunction, endoplasmic reticulum stress, inflammation, gut microbiota dysbiosis, and adipose tissue dysfunction. Currently, certain drugs, including insulin sensitizers, statins, vitamin E, ursodeoxycholic acid and betaine, are proven to be beneficial for the clinical treatment of NAFLD. Due to its complex pathogenesis, personalized medicine that integrates various mechanisms may provide better benefits to patients with NAFLD. The holistic view and syndrome differentiation of TCM have advantages in treating NAFLD, which are similar to the principles of personalized medicine. In TCM, NAFLD is primarily classified into five types based on clinical experience. It is located in the liver and is closely related to spleen and kidney functions. However, due to the multi-component characteristics of traditional Chinese medicine, its application in the treatment of NAFLD has been considerably limited. In this review, we summarize the advances in the pathogenesis and treatment of NAFLD, drawn from both the Western medicine and TCM perspectives. We highlight that Chinese and Western medicine have complementary advantages and should receive increased attention in the prevention and treatment of NAFLD.

19.
Public Health ; 228: 137-146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354583

RESUMO

OBJECTIVES: The epidemiological trends of cardiovascular disease (CVD) burden attributed to low physical activity (LPA) across various regions and countries are poorly understood. Hence, we assessed the global, regional, and national spatiotemporal trends of LPA-related CVD from 1990 to 2019. STUDY DESIGN: We conducted a secondary analysis of the Global Burden of Disease Study 2019. The data on LPA-related CVD were examined with regard to sex, age, year, and Socio-Demographic Index (SDI). METHODS: We assessed the temporal changes in age-standardized mortality rate (ASMR) and age-standardized death rate (ASDR) using the estimated annual percentage change (EAPC) over a 30-year period. RESULTS: There were a staggering 0.64 million deaths and 9.99 million disability-adjusted life-years globally attributed to LPA-related CVD in 2019. The majority of the LPA-related CVD burden was observed in the population aged ≥80 years. It also indicated a high disease burden of LPA-related CVD in Central Asia, Arabian Peninsula, and North Africa. Although there has been a decline in ASMR and ASDR associated with LPA-related CVD on a global scale, the countries experiencing the most substantial increase in LPA-related CVD burden are Uzbekistan, Tajikistan, and Azerbaijan. The ASMR and ASDR remained stable in regions with low, low-middle, and middle SDI levels. The EAPCs of ASMR and ASDR were negatively linked with SDI in 2019. CONCLUSIONS: From 1990 to 2019, LPA led to a significant and escalating burden of CVD in certain regions, namely, Uzbekistan, Tajikistan, and Azerbaijan. It is imperative for governments and policymakers to implement regulatory measures and strategic interventions aimed at mitigating this burden.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/epidemiologia , Carga Global da Doença , Percepção Social , África do Norte , Exercício Físico , Saúde Global , Anos de Vida Ajustados por Qualidade de Vida
20.
Cell Metab ; 36(4): 839-856.e8, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38367623

RESUMO

Utilization of lipids as energy substrates after birth causes cardiomyocyte (CM) cell-cycle arrest and loss of regenerative capacity in mammalian hearts. Beyond energy provision, proper management of lipid composition is crucial for cellular and organismal health, but its role in heart regeneration remains unclear. Here, we demonstrate widespread sphingolipid metabolism remodeling in neonatal hearts after injury and find that SphK1 and SphK2, isoenzymes producing the same sphingolipid metabolite sphingosine-1-phosphate (S1P), differently regulate cardiac regeneration. SphK2 is downregulated during heart development and determines CM proliferation via nuclear S1P-dependent modulation of histone acetylation. Reactivation of SphK2 induces adult CM cell-cycle re-entry and cytokinesis, thereby enhancing regeneration. Conversely, SphK1 is upregulated during development and promotes fibrosis through an S1P autocrine mechanism in cardiac fibroblasts. By fine-tuning the activity of each SphK isoform, we develop a therapy that simultaneously promotes myocardial repair and restricts fibrotic scarring to regenerate the infarcted adult hearts.


Assuntos
Coração , Lisofosfolipídeos , Esfingolipídeos , Esfingosina/análogos & derivados , Animais , Esfingolipídeos/metabolismo , Isoenzimas , Mamíferos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...