Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MedComm (2020) ; 5(6): e554, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38783892

RESUMO

CD44, a nonkinase single span transmembrane glycoprotein, is a major cell surface receptor for many other extracellular matrix components as well as classic markers of cancer stem cells and immune cells. Through alternative splicing of CD44 gene, CD44 is divided into two isoforms, the standard isoform of CD44 (CD44s) and the variant isoform of CD44 (CD44v). Different isoforms of CD44 participate in regulating various signaling pathways, modulating cancer proliferation, invasion, metastasis, and drug resistance, with its aberrant expression and dysregulation contributing to tumor initiation and progression. However, CD44s and CD44v play overlapping or contradictory roles in tumor initiation and progression, which is not fully understood. Herein, we discuss the present understanding of the functional and structural roles of CD44 in the pathogenic mechanism of multiple cancers. The regulation functions of CD44 in cancers-associated signaling pathways is summarized. Moreover, we provide an overview of the anticancer therapeutic strategies that targeting CD44 and preclinical and clinical trials evaluating the pharmacokinetics, efficacy, and drug-related toxicity about CD44-targeted therapies. This review provides up-to-date information about the roles of CD44 in neoplastic diseases, which may open new perspectives in the field of cancer treatment through targeting CD44.

3.
Adv Sci (Weinh) ; 10(28): e2207518, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37585564

RESUMO

Recently, the major challenge in treating osteosarcoma patients is the metastatic disease, most commonly in the lungs. However, the underlying mechanism of recurrence and metastasis of osteosarcoma after surgical resection of primary tumor remains unclear. This study aims to investigate whether the pulmonary metastases characteristic of osteosarcoma is associated with surgical treatment and whether surgery contributes to the formation of pre-metastatic niche in the distant lung tissue. In the current study, the authors observe the presence of circulating tumor cells in patients undergoing surgical resection of osteosarcoma which is correlated to tumor recurrence. The pulmonary infiltrations of neutrophils and Gr-1+ myeloid cells are characterized to form a pre-metastatic niche upon the exposure of circulating tumor cells after surgical resection. It is found that mitochondrial damage-associated molecular patterns released from surgical resection contribute to the formation of pre-metastatic niche in lung through IL-1ß secretion. This study reveals that surgical management for osteosarcoma, irrespective of the primary tumor, might promote the formation of postoperative pre-metastatic niche in lung which is with important implications for developing rational therapies during peri-operative period.

4.
J Immunother Cancer ; 11(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36858460

RESUMO

BACKGROUND: Mitochondrial transcription factor A (TFAM) is a transcription factor that maintains mitochondrial DNA (mtDNA) stabilization and initiates mtDNA replication. However, little is known about the immune regulation function and TFAM expression in immune cells in the tumors. METHODS: Mouse tumor models were applied to analyze the effect of TFAM deficiency in myeloid cell lineage on tumor progression and tumor microenvironment (TME) modification. In vitro, primary mouse bone marrow-derived dendritic cells (BMDCs) were used in the investigation of the altered function and the activated pathway. OVA was used as the model antigen to validate the activation of immune responses in vivo. STING inhibitors were used to confirm the STING activation provoked by Tfam deficient in DCs. RESULTS: The deletion of TFAM in DCs led to mitochondrial dysfunction and mtDNA cytosolic leakage resulting in the cGAS-STING pathway activation in DCs, which contributed to the enhanced antigen presentation. The deletion of TFAM in DCs has interestingly reversed the immune suppressive TME and inhibited tumor growth and metastasis in tumor models. CONCLUSIONS: We have revealed that TFAM knockout in DCs ameliorated immune-suppressive microenvironment in tumors through STING pathway. Our work suggests that specific TFAM knockout in DCs might be a compelling strategy for designing novel immunotherapy methods in the future.


Assuntos
Proteínas de Ligação a DNA , Células Dendríticas , Proteínas de Grupo de Alta Mobilidade , Mitocôndrias , Neoplasias , Animais , Camundongos , Apresentação de Antígeno , Modelos Animais de Doenças , DNA Mitocondrial , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Mitocôndrias/patologia , Neoplasias/patologia
6.
Cancer Lett ; 554: 216012, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470544

RESUMO

For patients with esophageal squamous cell carcinoma (ESCC), standard therapeutic methods (cisplatin and radiotherapy) have been found to be ineffective and severely toxic. Targeted therapy emerges as a promising solution for this dilemma. It has been reported that targeted therapies are applied alone or in combination with standard conventional therapies for the treatment of a variety of cancers. To the best of our knowledge, in patients with ESCC, the combinational methods containing standard therapy and ERK-targeted therapy have yet to be explored. To analyze the prognostic role of p-ERK in ESCC patients, the Kaplan-Meier analysis and Cox regression model were used. To assess the effects of ERK-targeted therapy (GDC0994) on ESCC cells, in vitro studies including CCK-8 assay, colony formation assay, and scratch wound healing assay were conducted. In addition, the changes in cell cycle distribution and apoptosis were analyzed by flow cytometry. Besides, to assess the efficacy of different therapies in vivo, the xenograft tumor models were established by subcutaneously inoculating tumor cells into the flank/leg of mice. In patients with ESCC, a strong correlation between the high expression level of p-ERK and the poor prognosis (p < 0.01, Log-Rank test) has been identified. By analyzing the results from CCK-8 and scratch wound healing assays, we demonstrated that the ERK inhibitor repressed the viability and migration of ESCC cells. In addition, following the treatment of GDC0994, the volumes of xenograft tumors significantly decreased (p < 0.001, one-way ANOVA). Furthermore, blocking the mitogen-activated protein kinase (MAPK/ERK) pathway enhanced the therapeutic efficacy of both cisplatin and radiotherapy (p < 0.05). These findings imply the role of p-ERK in the prognosis of ESCC patients and the therapeutic value of ERK inhibitors in ESCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Humanos , Camundongos , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Proliferação de Células , Quimiorradioterapia/métodos , Cisplatino , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/radioterapia , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia
8.
Signal Transduct Target Ther ; 7(1): 399, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566328

RESUMO

For coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 15-30% of patients are likely to develop COVID-19-related acute respiratory distress syndrome (ARDS). There are still few effective and well-understood therapies available. Novel variants and short-lasting immunity are posing challenges to vaccine efficacy, so finding antiviral and antiinflammatory treatments remains crucial. Here, tripterin (TP), a traditional Chinese medicine, was encapsulated into liposome (TP lipo) to investigate its antiviral and antiinflammatory effects in severe COVID-19. By using two severe COVID-19 models in human ACE2-transgenic (hACE2) mice, an analysis of TP lipo's effects on pulmonary immune responses was conducted. Pulmonary pathological alterations and viral burden were reduced by TP lipo treatment. TP lipo inhibits SARS-CoV-2 replication and hyperinflammation in infected cells and mice, two crucial events in severe COVID-19 pathophysiology, it is a promising drug candidate to treat SARS-CoV-2-induced ARDS.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Animais , Camundongos , SARS-CoV-2 , Lipossomos , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico
9.
Signal Transduct Target Ther ; 7(1): 376, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347846

RESUMO

As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.


Assuntos
Neoplasias , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Via de Sinalização Hippo , Neoplasias/genética , Proliferação de Células
10.
Acta Pharm Sin B ; 12(4): 1740-1760, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35847511

RESUMO

Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.

11.
Biochim Biophys Acta Rev Cancer ; 1877(5): 188762, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35853517

RESUMO

Neutrophils are the frontline cells in response to microbial infections and are involved in a range of inflammatory disorders in the body. In recent years, neutrophils have gained considerable attention in their involvement of complex roles in tumor development and progression. Tumor-associated neutrophils (TANs) that accumulate in local region could be triggered by external stimuli from tumor microenvironment (TME) and switch between anti- and pro-tumor phenotypes. The anti-tumor neutrophils kill tumor cells through direct cytotoxic effects as well as indirect effects by activating adaptive immune responses. In contrast, the pro-tumor phenotype of neutrophils might be associated with cell proliferation, angiogenesis, and immunosuppression in TME. More recently, neutrophils have been proposed as a potential target in cancer therapy for their ability to diminish the pro-tumor pathways, such as by immune checkpoint blockade. This review discusses the complex roles of neutrophils in TME and highlights the strategies in neutrophil targeting in cancer treatment with a particular focus on the progresses of ongoing clinical trials involving neutrophil-targeted therapies.


Assuntos
Neoplasias , Neutrófilos , Humanos , Inibidores de Checkpoint Imunológico , Neoplasias/patologia , Neovascularização Patológica/patologia , Microambiente Tumoral
13.
Signal Transduct Target Ther ; 7(1): 159, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581200

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) has posed great threats to global health and economy. Several effective vaccines are available now, but additional booster immunization is required to retain or increase the immune responses owing to waning immunity and the emergency of new variant strains. The deficiency of intramuscularly delivered vaccines to induce mucosal immunity urged the development of mucosal vaccines. Here, we developed an adjuvanted intranasal RBD vaccine and monitored its long-term immunogenicity against both wild-type and mutant strains of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), including Omicron variants, in mice. Three-dose intranasal immunization with this vaccine induced and maintained high levels of neutralizing IgG antibodies in the sera for at least 1 year. Strong mucosal immunity was also provoked, including mucosal secretory IgA and lung-resident memory T cells (TRM). We also demonstrated that the long-term persistence of lung TRM cells is a consequence of local T-cell proliferation, rather than T-cell migration from lymph nodes. Our data suggested that the adjuvanted intranasal RBD vaccine is a promising vaccine candidate to establish robust, long-lasting, and broad protective immunity against SARS-CoV-2 both systemically and locally.


Assuntos
COVID-19 , SARS-CoV-2 , Administração Intranasal , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , Vacinas Sintéticas
14.
J Immunol ; 208(10): 2425-2435, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35437281

RESUMO

Tumor metastasis is the primary cause of mortality in patients with cancer. Several chemokines are identified as important mediators of tumor growth and/or metastasis. The level of CXCL13 has been reported to be elevated in serum or tumor tissues in patients, which mainly functions to attract B cells and follicular B helper T cells. However, the role of CXCL13 in cancer growth and metastasis is not fully explored. In the current study, we found that CXCL13 is not a strong mediator to directly promote tumor growth; however, the mice deficient in CXCL13 had far fewer pulmonary metastatic foci than did the wild-type mice in experimental pulmonary metastatic models. In addition, Cxcl13 -/- mice also had fewer IL-10-producing B cells (CD45+CD19+IL-10+) in the metastatic tumor immune microenvironment than those of wild-type C57BL/6 mice, resulting in an enhanced antitumor immunity. Notably, CXCL13 deficiency further improved the efficacy of a traditional chemotherapeutic drug (cyclophosphamide), as well as that of anti-programmed death receptor-1 immunotherapy. These results suggested that CXCL13 has an important role in regulating IL-10-producing B cells in tumor metastasis and might be a promising target for improving therapeutic efficiency and stimulating tumor immunity in future cancer therapy.


Assuntos
Linfócitos B Reguladores , Quimiocina CXCL13 , Neoplasias , Animais , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/patologia , Quimiocina CXCL13/imunologia , Humanos , Interleucina-10 , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral
15.
Mol Cancer ; 21(1): 71, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277177

RESUMO

Cancer is a severe disease that substantially jeopardizes global health. Although considerable efforts have been made to discover effective anti-cancer therapeutics, the cancer incidence and mortality are still growing. The personalized anti-cancer therapies present themselves as a promising solution for the dilemma because they could precisely destroy or fix the cancer targets based on the comprehensive genomic analyses. In addition, genome editing is an ideal way to implement personalized anti-cancer therapy because it allows the direct modification of pro-tumor genes as well as the generation of personalized anti-tumor immune cells. Furthermore, non-viral delivery system could effectively transport genome editing tools (GETs) into the cell nucleus with an appreciable safety profile. In this manuscript, the important attributes and recent progress of GETs will be discussed. Besides, the laboratory and clinical investigations that seek for the possibility of combining non-viral delivery systems with GETs for the treatment of cancer will be assessed in the scope of personalized therapy.


Assuntos
Edição de Genes , Neoplasias , Sistemas CRISPR-Cas , Genes Neoplásicos , Terapia Genética , Humanos , Neoplasias/genética , Neoplasias/terapia
16.
MedComm (2020) ; 3(1): e126, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35317190

RESUMO

New genetic variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) constantly emerge through unmitigated spread of the virus in the ongoing Coronavirus disease 2019 pandemic. Omicron (B.1.1.529), the latest variant of concern (VOC), has so far shown exceptional spread and infectivity and has established itself as the dominant variant in recent months. The SARS-CoV-2 spike glycoprotein is a key component for the recognition and binding to host cell angiotensin-converting enzyme 2 receptors. The Omicron variant harbors a cluster of substitutions/deletions/insertions, and more than 30 mutations are located in spike. Some noticeable mutations, including K417N, T478K, N501Y, and P681H, are shared with the previous VOCs Alpha, Beta, Gamma, or Delta variants and have been proven to be associated with higher transmissibility, viral infectivity, and immune evasion potential. Studies have revealed that the Omicron variant is partially resistant to the neutralizing activity of therapeutic antibodies and convalescent sera, which poses significant challenges for the clinical effectiveness of the current vaccines and therapeutic antibodies. We provide a comprehensive analysis and summary of the epidemiology and immune escape mechanisms of the Omicron variant. We also suggest some therapeutic strategies against the Omicron variant. This review, therefore, aims to provide information for further research efforts to prevent and contain the impact of new VOCs during the ongoing pandemic.

17.
Cell Biol Toxicol ; 38(4): 591-609, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34170461

RESUMO

Crystalline silica (CS), an airborne particulate, is a major global occupational health hazard. While it is known as an important pathogenic factor in many severe lung diseases, the underlying mechanisms of its toxicity are still unclear. In the present study, we found that intra-tracheal instillation of CS caused rapid emergence of necrotic alveolar macrophages. Cell necrosis was a consequence of the release of cathepsin B in CS-treated macrophages, which caused dysfunction of the mitochondrial membrane. Damage to mitochondria disrupted Na+/K+ ATPase activity in macrophages, leading to intracellular sodium overload and the subsequent cell necrosis. Further studies indicate that CS-induced macrophage necrosis and the subsequent release of mitochondrial DNA could trigger the recruitment of neutrophils in the lung, which was regulated by the TLR9 signaling pathway. In conclusion, our results suggest a novel mechanism whereby CS leads to rapid macrophage necrosis through cathepsin B release, following the leakage of mitochondrial DNA as a key event in the induction of pulmonary neutrophilic inflammation. This study has important implications for the early prevention and treatment of diseases induced by CS.


Assuntos
Pneumonia , Dióxido de Silício , Catepsina B/metabolismo , DNA Mitocondrial/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Necrose/induzido quimicamente , Necrose/metabolismo , Pneumonia/induzido quimicamente , Dióxido de Silício/toxicidade
18.
Genes Dis ; 9(1): 12-27, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34514075

RESUMO

To defense harmful stimuli or maintain the immune homeostasis, the body produces and recruits a superfamily of cytokines such as interleukins, interferons, chemokines etc. Among them, chemokines act as crucial regulators in defense systems. CCL5/CCR5 combination is known for facilitating inflammatory responses, as well as inducing the adhesion and migration of different T cell subsets in immune responses. In addition, recent studies have shown that the interaction between CCL5 and CCR5 is involved in various pathological processes including inflammation, chronic diseases, cancers as well as the infection of COVID-19. This review focuses on how CCL5/CCR5 axis participates in the pathological processes of different diseases and their relevant signaling pathways for the regulation of the axis. Moreover, we highlighted the gene therapy and chemotherapy studies for treating CCR5-related diseases, including the ongoing clinical trials. The barriers and perspectives for future application and translational research were also summarized.

19.
J Hematol Oncol ; 14(1): 195, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789315

RESUMO

The multipotent mesenchymal stem/stromal cells (MSCs), initially discovered from bone marrow in 1976, have been identified in nearly all tissues of human body now. The multipotency of MSCs allows them to give rise to osteocytes, chondrocytes, adipocytes, and other lineages. Moreover, armed with the immunomodulation capacity and tumor-homing property, MSCs are of special relevance for cell-based therapies in the treatment of cancer. However, hampered by lack of knowledge about the controversial roles that MSC plays in the crosstalk with tumors, limited progress has been made with regard to translational medicine. Therefore, in this review, we discuss the prospects of MSC-associated anticancer strategies in light of therapeutic mechanisms and signal transduction pathways. In addition, the clinical trials designed to appraise the efficacy and safety of MSC-based anticancer therapies will be assessed according to published data.


Assuntos
Transplante de Células-Tronco Mesenquimais , Neoplasias/terapia , Animais , Humanos , Imunomodulação , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Neoplasias/imunologia , Ciência Translacional Biomédica
20.
Nano Lett ; 21(19): 7960-7969, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34533963

RESUMO

Toll-like receptor (TLR) agonists as the potent stimulants of an innate immune system hold promises for applications in anticancer immunotherapy. However, most of them are limited in the clinical translation due to the uncontrolled systemic inflammatory response. In the current study, 1V209, a small molecule TLR7 agonist, was conjugated with cholesterol (1V209-Cho) and prepared into liposomes (1V209-Cho-Lip). 1V209-Cho-Lip exerted minimal toxic effects and enhanced the transportation ability in lymph nodes (LNs) compared with 1V209. 1V209-Cho-Lip treatment inhibited tumor progression in CT26 colorectal cancer, 4T1 breast cancer, and Pan02 pancreatic ductal cancer models through inducing effective DC activation and eliciting CD8+ T cell responses. Furthermore, 1V209-Cho-Lip induced tumor-specific memory immunity to inhibit cancer recurrence and metastasis. These results indicate that cholesterol conjugation with 1V209 is an effective approach to target lymph nodes and to reduce the adverse effects. This work provides a rational basis for the distribution optimization of TLR agonists for potential clinical use.


Assuntos
Lipossomos , Receptor 7 Toll-Like , Adenina/análogos & derivados , Adjuvantes Imunológicos/farmacologia , Animais , Linfonodos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...