Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 635: 535-542, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36603536

RESUMO

Electron-transporting materials (ETMs) with higher carrier mobility and a suitable band gap structure play a significant role in determining the photovoltaic performance of perovskite solar cells (PSCs). Herein, cube-like mesoporous single-crystal anatase TiO2 (Meso-TiO2) nanoparticles synthesized by using a facile hydrothermal method were utilized as an efficient ETM for PSCs. The superior semiconducting properties of the Meso-TiO2 based ETM enabled the best power conversion efficiency (PCE) of 20.05% for a PSC. Moreover, the device retained 80% of its initial PCE after being stored in ambient conditions for 20 days under 25 ± 5% relative humidity. In contrast to the commercial TiO2 ETM, the Meso-TiO2 ETM based PSC showed a distinguished interface with better interfacial conditions and improved carrier extraction originating from the cube-like mesoporous single-crystal anatase TiO2 ETM.

2.
Dalton Trans ; 48(16): 5271-5284, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30924838

RESUMO

Clews of polymer nanobelts (CsPNBs) have the advantages of inexpensive raw materials, simple synthesis and large output. Novel clews of carbon nanobelts (CsCNBs) have been successfully prepared by carbonizing CsPNBs and by KOH activation subsequently. From the optimized process, CsCNBs*4, with a specific surface area of 2291 m2 g-1 and a pore volume of up to 1.29 cm3 g-1, has been obtained. Fundamentally, the CsCNBs possess a three-dimensional conductive network structure, a hierarchically porous framework, and excellent hydrophilicity, which enable fast ion diffusion through channels and a large enough ion adsorption/desorption surface to improve electrochemical performance of supercapacitors. The product exhibits a high specific capacitance of 327.5 F g-1 at a current density of 0.5 A g-1 in a three-electrode system. The results also reveal a high-rate capacitance (72.2% capacitance retention at 500 mV s-1) and stable cycling lifetime (95% of initial capacitance after 15 000 cycles). Moreover, CsCNBs*4 provides a high energy density of 29.8 W h kg-1 at a power density of 345.4 W kg-1 in 1 M tetraethylammonium tetrafluoroborate/acetonitrile (TEABF4/AN) electrolyte. These inspiring results imply that this carbon material with a three-dimensional conductive network structure possesses excellent potential for energy storage.

3.
Dalton Trans ; 47(21): 7316-7326, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29770391

RESUMO

Herein, N-doped graphitic hierarchically porous carbon nanofibers (NGHPCF) were prepared by electrospinning the composite of bimetallic-coordination metal-organic frameworks and polyacrylonitrile, followed by a pyrolysis and acid wash process. Control over the N content, specific surface area, and degree of graphitization of NGHPCF materials has been realized by adjusting the Co/Zn metal coordination content as well as the pyrolysis temperature. The obtained NGHPCF with a high specific surface area (623 m2 g-1) and nitrogen content (13.83 wt%) exhibit a high capacitance of 326 F g-1 at 0.5 A g-1. In addition, the capacitance of 170 F g-1 is still maintained at a high current density (40 A g-1); this indicates a high capacitance retention capability. Furthermore, a superb energy density (9.61 W h kg-1) is obtained with a high power density (62.4 W kg-1) using an organic electrolyte. These results fully illustrate that the prepared NGHPCF binder-free electrodes are promising candidates for high-performance supercapacitors.

4.
Chemistry ; 24(8): 1988-1997, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29235705

RESUMO

Hollow carbon nanospheres (HCNs) with specific surface areas up to 2949 m2 g-1 and pore volume up to 2.9 cm3 g-1 were successfully synthesized from polyaniline-co-polypyrrole hollow nanospheres by carbonization and CO2 activation. The cavity diameter and wall thickness of HCNs can be easily controlled by activation time. Owing to their large inner cavity and enclosed structure, HCNs are desirable carriers for encapsulating sulfur. To better understand the effects of pore characteristics and sulfur contents on the performances of lithium-sulfur batteries, three composites of HCNs and sulfur are prepared and studied in detail. The composites of HCNs with moderate specific surface areas and suitable sulfur content present a better performance. The first discharge capacity of this composite reaches 1401 mAh g-1 at 0.2 C. Even after 200 cycles, the discharge capacity remains at 626 mAh g-1 .

5.
Chemistry ; 23(21): 5059-5065, 2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28225556

RESUMO

A homogeneous Nb-doped rutile TiO2 mesocrystal material was synthesized successfully through a facile hydrothermal route. The incorporation of Nb5+ not only promotes the crystallization of the building subunits of the rutile TiO2 mesocrystal, but also improves the electrochemical performance at higher current rates. A capacity of 96.3 mAh g-1 at a current density as high as 40 C and an excellent long-term cycling stability with a capacity loss of approximately 0.006 % per cycle at 5 C could be achieved when an appropriate amount of Nb5+ was doped into rutile TiO2 mesocrystal. The reasons for the improvement of rate capability may be attributed to the enhancement of electronic conductivity, Li-ion diffusion kinetics, and the surface storage property for the Nb-doped rutile TiO2 mesocrystal.

6.
Sci Rep ; 5: 8498, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25688035

RESUMO

An in situ hydrothermal route is developed for fabricating rutile TiO2 mesocrystals/reduced graphene oxide nanosheets (TGR) hybrids in the presence of dodecylbenzenesulphonic acid (ADBS). These rutile TiO2 mesocrystals with a Wulff shape are composed of ultra-tiny rod-like subunits with the same oriented direction and closely wrapped by the nanosheets of reduced graphene oxide (RGO). It is found that ADBS played a key role for the formation of mesocrystals during the self-assembly process, which pillared the graphene oxide (GO) nanosheets and involved the aggregation of the mesocrystal subunits. Furthermore, the TGR hybrids are used as an anode material and exhibited a large capacity over 150 mA h g(-1) at 20 C after 1000 cycles, and high rate capability up to 40 C. These high performance characteristics may be due to the intrinsic characteristics of rutile TiO2 mesocrystals constructed from ultra-tiny subunits and hybridized with super conductive RGO nanosheets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...