Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930891

RESUMO

The current study involved the preparation of a number of MnOx/Sep catalysts using the impregnation (MnOx/Sep-I), hydrothermal (MnOx/Sep-H), and precipitation (MnOx/Sep-P) methods. The MnOx/Sep catalysts that were produced were examined for their ability to catalytically oxidize formaldehyde (HCHO). Through the use of several technologies, including N2 adsorption-desorption, XRD, FTIR, TEM, H2-TPR, O2-TPD, CO2-TPD, and XPS, the function of MnOx in HCHO elimination was examined. The MnOx/Sep-H combination was shown to have superior catalytic activities, outstanding cycle stability, and long-term activity. It was also able to perform complete HCHO conversion at 85 °C with a high GHSV of 6000 mL/(g·h) and 50% humidity. Large specific surface area and pore size, a widely dispersed active component, a high percentage of Mn3+ species, and lattice oxygen concentration all suggested a potential reaction route for HCHO oxidation. This research produced a low-cost, highly effective catalyst for HCHO purification in indoor or industrial air environments.

2.
Inflammopharmacology ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761314

RESUMO

Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.

3.
Signal Transduct Target Ther ; 9(1): 88, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594257

RESUMO

G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Estados Unidos , Humanos , Receptores Acoplados a Proteínas G/química , Sítio Alostérico , Desenho de Fármacos , Ligantes
4.
Neuroscience ; 546: 157-177, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38574797

RESUMO

Epilepsy is one of the most widespread and complex diseases in the central nervous system (CNS), affecting approximately 65 million people globally, an important factor resulting in neurological disability-adjusted life year (DALY) and progressive cognitive dysfunction. Medication is the most essential treatment. The currently used drugs have shown drug resistance in some patients and only control symptoms; the development of novel and more efficacious pharmacotherapy is imminent. Increasing evidence suggests neuroinflammation is involved in the occurrence and development of epilepsy, and high expression of NLRP3 inflammasome has been observed in the temporal lobe epilepsy (TLE) brain tissue of patients and animal models. The inflammasome is a crucial cause of neuroinflammation by activating IL-1ß and IL-18. Many preclinical studies have confirmed that regulating NLRP3 inflammasome pathway can prevent the development of epilepsy, reduce the severity of epilepsy, and play a neuroprotective role. Therefore, regulating NLRP3 inflammasome could be a potential target for epilepsy treatment. In summary, this review describes the priming and activation of inflammasome and its biological function in the progression of epilepsy. In addition, we reviewes the current pharmacological researches for epilepsy based on the regulation of NLRP3 inflammasome, aiming to provide a basis and reference for developing novel antiepileptic drugs.


Assuntos
Anticonvulsivantes , Epilepsia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Animais , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo
5.
Acta Pharm Sin B ; 14(3): 1302-1316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487000

RESUMO

Pancreatic cancer, one of the most aggressive malignancies, has no effective treatment due to the lack of targets and drugs related to tumour metastasis. SIRT6 can promote the migration of pancreatic cancer and could be a potential target for antimetastasis of pancreatic cancer. However, highly selective and potency SIRT6 inhibitor that can be used in vivo is yet to be discovered. Here, we developed a novel SIRT6 allosteric inhibitor, compound 11e, with maximal inhibitory potency and an IC50 value of 0.98 ± 0.13 µmol/L. Moreover, compound 11e exhibited significant selectivity against other histone deacetylases (HADC1‒11 and SIRT1‒3) at concentrations up to 100 µmol/L. The allosteric site and the molecular mechanism of inhibition were extensively elucidated by cocrystal complex structure and dynamic structural analyses. Importantly, we confirmed the antimetastatic function of such inhibitors in four pancreatic cancer cell lines as well as in two mouse models of pancreatic cancer liver metastasis. To our knowledge, this is the first study to reveal the in vivo effects of SIRT6 inhibitors on liver metastatic pancreatic cancer. It not only provides a promising lead compound for subsequent inhibitor development targeting SIRT6 but also provides a potential approach to address the challenge of metastasis in pancreatic cancer.

6.
Org Lett ; 26(10): 2085-2090, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38441049

RESUMO

In this paper, we describe a Re2O7-mediated ring-opening arylation of unactivated arylcyclopropane because of its functionalization with various arenes via Friedel-Crafts-type reactivity. This protocol allows facile access to functionalized 1,1-diaryl alkanes and is characterized by a broad substrate scope, mild reaction conditions, high efficiency, and high atom economy. Both density functional theory calculations and deuterium labeling experiments were carried out to justify the indispensable role of HFIP in this transformation and pointed to Re2O7-mediated ring opening being the rate-determining step.

7.
Org Biomol Chem ; 22(12): 2370-2374, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38416487

RESUMO

An efficient method was developed for the one-pot construction of pyrrolo[1,2-a]quinoxalines via a Cu(II)-catalyzed domino reaction between 2-(1H-pyrrol-1-yl)anilines and alkylsilyl peroxides. This reaction proceeds through C-C bond cleavage and new C-C and C-N bond formation. A mechanistic study suggests that alkyl radical species participate in the cascade reaction.

8.
Biomed Pharmacother ; 171: 116176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242038

RESUMO

Depression is a prevalent and debilitating psychiatric illness. However, the antidepressant drugs currently prescribed are only effective in a limited group of patients. Histone modifications mediated by histone acetylation are considered to play an important role in the pathogenesis and treatment of depression. Recent studies have revealed that histone deacetylase inhibitors may be involved in the pathogenesis of depression and the underlying mechanism of the antidepressant therapeutic action. Here, we first conducted virtual screening of histone deacetylase-5 (HDAC5) inhibitors against HDAC5, a target closely related to depression, and identified compound T2943, further verifying its inhibitory effect on enzyme activities in vitro. After stereotaxic injection of T2943 into the hippocampus of mice, the antidepressant effect of T2943 was evaluated using behavioral experiments. We also used different proteomic and molecular biology analyses to determine and confirm that T2943 promoted histone 3 lysine 14 acetylation (H3K14ac) by inhibiting HDAC5 activity. Following the overexpression of adenoviral HDAC5 in the hippocampus of mice and subsequent behavioral analyses, we confirmed that T2943 exerts antidepressant effects by inhibiting HDAC5 activity. Our findings highlight the efficacy of targeting HDAC5 to treat depression and demonstrate the potential of using T2943 as an antidepressant.


Assuntos
Histonas , Proteômica , Humanos , Antidepressivos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo
9.
Acta Pharm Sin B ; 14(1): 67-86, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239234
10.
Org Biomol Chem ; 22(3): 472-476, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38099809

RESUMO

An array of pyrrolo[1,2-a]quinoxaline derivatives were achieved with moderate to good yields via the electrochemical redox reaction, which includes the functionalization of C(sp3)-H bonds and the construction of C-C and C-N bonds. In this atom economic reaction, THF was used as both a reactant and a solvent, and H2 was the sole by-product.

11.
Biomed Pharmacother ; 168: 115675, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812887

RESUMO

Clinically, neuropathic pain treatment remains a challenging issue because the major therapy, centred around pharmacological intervention, is not satisfactory enough to patient by reason of low effectiveness and more adverse reaction. Therefore, it is still necessary to find more effective and safe therapy to ameliorate neuropathic pain. The purpose of this study was to explore the antinociceptive effect of Echinacoside (ECH), an active compound of Cistanche deserticola Ma, on peripheral neuropathic pain induced by chronic constriction injury (CCI) in mice, and to demonstrate its potential mechanism in vivo and vitro. In the present study, results showed that intraperitoneal administration of ECH (50, 100, and 200 mg/kg) could alleviate mechanical allodynia, cold allodynia and thermal hyperalgesia via behavioural test. Moreover, the structure and function of injured sciatic nerve by CCI were taken a turn for the better to a certain extent after ECH treatment using histopathological and electrophysiological test. Furthermore, ECH repressed the expression of the P2X7R and FKN and reduced the expression and release of the IL-1ß, IL-6 and TNF-α. Besides, ECH could decrease Ca2+ influx and Cats efflux and inhibit phosphorylation of p38MAPK. To sum up, the present study illustrated that ECH could alleviate peripheral neuropathic pain by inhibiting microglia overactivation and inflammation through P2X7R/FKN/CX3CR1 signalling pathway in spinal cord. This study would provide a new perspective and strategy for the pharmacological treatment on neuropathic pain.


Assuntos
Neuralgia , Fármacos Neuroprotetores , Animais , Camundongos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo , Hiperalgesia/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Nervo Isquiático/lesões , Medula Espinal/metabolismo
12.
Drug Discov Today ; 28(12): 103803, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852356

RESUMO

G-protein-coupled receptors (GPCRs) are a family of cell surface proteins that can sense a variety of extracellular stimuli and mediate multiple signaling transduction pathways involved in human physiology. Recent advances in GPCR structural biology have revealed a relatively conserved intracellular allosteric site in multiple GPCRs, which can be utilized to modulate receptors from the inside. This novel intracellular site partially overlaps with the G-protein and ß-arrestin coupling sites, providing a novel avenue for biological intervention. Here, we review evidence available for GPCR structures complexed with intracellular small-molecule allosteric modulators, elucidating drug-target interactions and allosteric mechanisms. Moreover, we highlight the potential of intracellular allosteric modulators in achieving biased signaling, which provides insights into biased allosteric mechanisms.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Humanos , Sítio Alostérico , Regulação Alostérica , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
13.
Curr Opin Struct Biol ; 83: 102701, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716092

RESUMO

Allostery is a ubiquitous biological phenomenon where perturbation at topologically distal areas of a protein serves as a trigger to fine-tune the orthosteric site and thus regulate protein function. The investigation of allosteric regulation greatly enhances our understanding of human diseases and broadens avenue for drug discovery. For decades, owing to the difficulty in allostery characterization through serendipitous experimental screening, researchers have developed several innovative computational approaches, which proves to accelerate the elucidation of allostery. Herein, we review the state-of-the-art advance of computational methodologies for allostery study, with particular emphasis on promising trends emerging over the past two years. We expect this review will outline the latest landscape of allostery study and inspire researchers to further facilitate this field.


Assuntos
Descoberta de Drogas , Proteínas , Humanos , Sítio Alostérico , Descoberta de Drogas/métodos , Regulação Alostérica , Proteínas/metabolismo
14.
Eur J Pharmacol ; 957: 176003, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37640219

RESUMO

Neonatal hypoxic-ischemic brain damage (HIBD) is a prominent contributor to both immediate mortality and long-term impairment in newborns. The elusive nature of the underlying mechanisms responsible for neonatal HIBD presents a significant obstacle in the effective clinical application of numerous pharmaceutical interventions. This comprehensive review aims to concentrate on the potential neuroprotective agents that have demonstrated efficacy in addressing various pathogenic factors associated with neonatal HIBD, encompassing oxidative stress, calcium overload, mitochondrial dysfunction, endoplasmic reticulum stress, inflammatory response, and apoptosis. In this review, we conducted an analysis of the precise molecular pathways by which these drugs elicit neuroprotective effects in animal models of neonatal hypoxic-ischemic brain injury (HIBD). Our objective was to provide a comprehensive overview of potential neuroprotective agents for the treatment of neonatal HIBD in animal experiments, with the ultimate goal of enhancing the feasibility of clinical translation and establishing a solid theoretical foundation for the clinical management of neonatal HIBD.


Assuntos
Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neuroproteção , Apoptose , Cálcio , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/prevenção & controle , Encéfalo
15.
Molecules ; 28(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446745

RESUMO

Conjugated diyne derivatives are important scaffolds in modern organic synthetic chemistry. Using the Glaser reaction involves the coupling of terminal alkynes which can efficiently produce conjugated diyne derivatives, while the use of a stoichiometric amount of copper salts, strong inorganic base, and excess oxidants is generally needed. Developing an environmentally friendly and effective method for the construction of symmetrical 1,3-diynes compounds by Glaser coupling is still highly desirable. In this study, we present an economical method for the production of symmetric diynes starting from various terminal acetylenes in a Glaser reaction. A simple and practical bis-N-heterocyclic carbene ligand has been introduced as efficient ligands for the Cu-catalyzed Glaser reaction. High product yields were obtained at 100 °C for a variety of substrates including aliphatic and aromatic terminal alkynes and differently substituted terminal alkynes including the highly sterically hindered substrate 2-methoxy ethynylbenzene or 2-trifluoromethyl ethynylbenzene and a series of functional groups, such as trifluoromethyl group, ester group, carboxyl group, and nitrile group. The established protocol is carried out in air under base-free condition and is operationally simple. These research work suggest that bis-N-heterocyclic carbene could also an appealing ligand for Glaser reaction and provide a reference for the preparation of symmetric 1,3-diynes in industrial filed.


Assuntos
Alcinos , Cobre , Estrutura Molecular , Cobre/química , Ligantes , Catálise , Alcinos/química , Di-Inos
16.
Eur J Pharmacol ; 947: 175646, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36907261

RESUMO

Chronic pain affects patients' physical and psychological health and quality of life, entailing a tremendous public health challenge. Currently, drugs for chronic pain are usually associated with a large number of side effects and poor efficacy. Chemokines in the neuroimmune interface combine with their receptors to regulate inflammation or mediate neuroinflammation in the peripheral and central nervous system. Targeting chemokines and their receptor-mediated neuroinflammation is an effective means to treat chronic pain. In recent years, growing evidence has shown that the expression of chemokine ligand 2 (CCL2) and its main chemokine receptor 2 (CCR2) is involved in its occurrence, development and maintenance of chronic pain. This paper summarises the relationship between the chemokine system, CCL2/CCR2 axis, and chronic pain, and the CCL2/CCR2 axis changes under different chronic pain conditions. Targeting chemokine CCL2 and its chemokine receptor CCR2 through siRNA, blocking antibodies, or small molecule antagonists may provide new therapeutic possibilities for managing chronic pain.


Assuntos
Dor Crônica , Humanos , Dor Crônica/tratamento farmacológico , Receptores de Quimiocinas , Quimiocina CCL2/metabolismo , Doenças Neuroinflamatórias , Ligantes , Qualidade de Vida , Imunoterapia , Receptores CCR2
17.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677525

RESUMO

Since heavy metal ion-contaminated water pollutionis becoming a serious threat to human and aquatic lives, new methods for highly efficient removal of heavy metal ions from wastewater are important to tackle environmental problems and sustainable development. In this work, we investigate the removal performances of heavy metal copper (II) ions from aqueous solutions using a gas hydrate-based method. Efficient removal of heavy metal copper (II) ions from wastewater via a methane hydrate process was demonstrated. The influence of the temperature, hydration time, copper (II) ions concentration, and stirring rate on the removal of heavy metal copper (II) ions were evaluated. The results suggested that a maximum of 75.8% copper (II) ions were removed from aqueous solution and obtained melted water with 70.6% yield with a temperature of -2 °C, stirring speed 800 r/min, and hydration time of 4 h with aninitial copper concentration of 100 mg/L. The initial concentration of copper (II) ions in the aqueous solution could be increased to between 100 and 500 mg/L. Meanwhile, our study also indicated that 65.6% copper (II) ions were removed from aqueous solution and the yield of melted water with 56.7%, even with the initial copper concentration of 500 mg/L. This research work demonstrates great potential for general applicability to heavy metal ion-contaminated wastewater treatment and provides a reference for the application of the gas hydrate method in separation.

18.
Biomed Pharmacother ; 159: 114266, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36652736

RESUMO

Neuronal apoptosis is a major pathological process associated with neurological dysfunction in neonates after hypoxic-ischemic brain damage (HIBD). Our previous study demonstrated that oxymatrine (OMT) exerts potential neuroprotective effects on neonatal rats subjected to hypoxic-ischemic insult. However, the underlying molecular mechanism remains unclear. In this study, we investigated the effects of OMT-mediated neuroprotection on neonatal HIBD by attempting to determine its effect on the Wnt/ß-catenin signaling pathway and explored the underlying mechanism. Both 7-day-old rat pups and primary hippocampus neurons were used to establish the HIBD and oxygen-glucose deprivation (OGD) injury models, respectively. Our results demonstrated that OMT treatment significantly increased cerebral blood flow and reduced S100B concentration, infarct volume, and neuronal apoptosis in neonatal rats. In vitro, OMT markedly increased cell viability and MMP level and decreased DNA damage. Moreover, OMT improved the mRNA and protein levels of Wnt1 and ß-catenin, inhibited the expression of DKK1 and GSK-3ß, enhanced the nuclear transfer of ß-catenin, and promoted the binding activity of ß-catenin with Tcf-4; however, it downregulated the expression of cleaved caspase-3 and cleaved caspase-9. Notably, the introduction of XAV-939 (a Wnt/ß-catenin signaling inhibitor) reversed the positive effects of OMT both in vivo and in vitro. Collectively, our findings demonstrated that OMT exerted a neuroprotective effect on neonatal HIBD by inhibiting neuronal apoptosis, which was partly via the activation of the Wnt/ß-catenin signaling pathway.


Assuntos
Hipóxia-Isquemia Encefálica , Fármacos Neuroprotetores , Ratos , Animais , Animais Recém-Nascidos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Apoptose , Hipocampo/metabolismo
19.
Int Immunopharmacol ; 114: 109520, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36513022

RESUMO

BACKGROUND: Premature ovarian insufficiency is common in clinically infertile patients. The NOD-like receptor family pyrin domain-containing 3 (NLRP3)/Gasdermin D (GSDMD) signaling pathway plays a key role in premature ovarian insufficiency. Leonurine (Leo) is one of the important active ingredients extracted from Leonurus japonicus Houttuyn, which can inhibit NLRP3 activation. However, whether leonurine hydrochloride plays a protective role in premature ovarian insufficiency through actions on NLRP3/GSDMD signaling is not yet known. METHODS: After cyclophosphamide-induced premature ovarian insufficiency was established in female mice, Leo was injected intraperitoneally over four weeks to evaluate the ovarian function and anti-pyroptosis effects using the metrics of fertility, serum hormone level, ovary weight, follicle number, expression of NLRP3/GSDMD pathway-related proteins, and serum IL-18 and IL-1ß levels. RESULTS: Intraperitoneal administration of leonurine hydrochloride was found to significantly protect fertility and maintain both serum hormone levels and follicle number in mice with premature ovarian insufficiency. Mice treated with leonurine hydrochloride consistently resisted cyclophosphamide-induced ovarian damage by inhibiting the activation of NLRP3 inflammasome, Caspase-1 and GSDMD in both ovarian tissue and granulosa cells, which led to lower levels of IL-18 and IL-1ß in the serum (p < 0.05, p < 0.01, p < 0.001). CONCLUSION: Intraperitoneal administration of leonurine hydrochloride prevents cyclophosphamide-induced premature ovarian insufficiency in mice by inhibiting NLRP3/GSDMD-mediated pyroptosis.


Assuntos
Interleucina-18 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Feminino , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Ciclofosfamida , Hormônios
20.
J Drug Target ; 31(2): 142-151, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112185

RESUMO

Depression is a serious mental illness and a prevalent condition with multiple aetiologies. The impact of the current therapeutic strategies is limited and the pathogenesis of the illness is not well understood. According to previous studies, depression onset is influenced by a variety of environmental and genetic factors, including chronic stress, aberrant changes in gene expression, and hereditary predisposition. Transcriptional regulation in eukaryotes is closely related to chromosome packing and is controlled by histone post-translational modifications. The development of new antidepressants may proceed along a new path with medications that target epigenetics. Histone deacetylase inhibitors (HDACis) are a class of compounds that interfere with the function of histone deacetylases (HDACs). This review explores the relationship between HDACs and depression and focuses on the current knowledge on their regulatory mechanism in depression and the potential therapeutic use of HDACis with antidepressant efficacy in preclinical research. Future research on inhibitors is also proposed and discussed.


Assuntos
Transtorno Depressivo Maior , Histonas , Humanos , Histonas/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Acetilação , Epigênese Genética , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...