Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; : e2400302, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955770

RESUMO

Necroptosis is a form of regulated necrotic cell death and has been confirmed to play pivotal roles in the pathogenesis of multiple autoimmune diseases such as rheumatoid arthritis (RA) and psoriasis. The development of necroptosis inhibitors may offer a promising therapeutic strategy for the treatment of these autoimmune diseases. Herein, starting from the in-house hit compound 1, we systematically performed structural optimization to discover potent necroptosis inhibitors with good pharmacokinetic profiles. The resulting compound 33 was a potent necroptosis inhibitor for both human I2.1 cells (IC50 < 0.2 nM) and murine Hepa1-6 cells (IC50 < 5 nM). Further target identification revealed that compound 33 was an inhibitor of receptor interacting protein kinase 1 (RIPK1) with favorable selectivity. In addition, compound 33 also exhibited favorable pharmacokinetic profiles (T1/2 = 1.32 h, AUC = 1157 ng·h/mL) in Sprague-Dawley rats. Molecular docking and molecular dynamics simulations confirmed that compound 33 could bind to RIPK1 with high affinity. In silico ADMET analysis demonstrated that compound 33 possesses good drug-likeness profiles. Collectively, compound 33 is a promising candidate for antinecroptotic drug discovery.

2.
Eur J Med Chem ; 265: 116045, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38128234

RESUMO

The receptor tyrosine kinase AXL has emerged as an attractive target in anticancer drug discovery. Herein, we described the discovery of a new series of 1,6-naphthyridin-4-one derivatives as potent AXL inhibitors. Starting from a low in vivo potency compound 9 which was previously reported by our group, we utilized structure-based drug design and scaffold hopping strategies to discover potent AXL inhibitors. The privileged compound 13c was a highly potent and orally bioavailable AXL inhibitor with an IC50 value of 3.2 ± 0.3 nM. Compound 13c exhibited significantly improved in vivo antitumor efficacy in AXL-driven tumor xenograft mice, causing tumor regression at well-tolerated dose, and demonstrated favorable pharmacokinetic properties (MRT = 16.5 h, AUC0-∞ = 59,815 ng h/mL) in Sprague-Dawley rats. These results suggest that 13c is a promising therapeutic candidate for AXL-targeting cancer treatment.


Assuntos
Receptor Tirosina Quinase Axl , Neoplasias , Ratos , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas , Ratos Sprague-Dawley , Receptores Proteína Tirosina Quinases , Inibidores de Proteínas Quinases/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células
3.
J Chromatogr A ; 1590: 10-18, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-30609959

RESUMO

Boronate affinity materials are usually used for selective enrichment of cis-diol-containing compounds, mainly based on formation of pH-dependent cyclic ester between cis-diol and boronic acid. Recently, B-N coordination, or combined with hydrogen-bonding interaction, was employed as primary interaction for the extraction of nitrogen-containing compounds. However, there are no reports about the combination of hydrophobic (or π-π) interaction and B-N coordination for the extraction. Here, we prepared a novel hydrophobic phenyl-boronic acid polymer (PBAP) through initiator-free ring-opening polymerization. The adsorption experiment indicated that the PBAP could combine hydrophobic (or π-π) interaction and B-N coordination to enhance their adsorption capacity toward hydrophobic and nitrogen-containing compounds, for example sulfamethoxazole (SMX) and trimethoprim (TMP). In addition, the PBAP monolith synthesized in pipette tip was used as solid phase microextraction (SPME) sorbent with combination of ultra high performance liquid chromatography to extract and monitor SMX and TMP from animal-originated foodstuffs. The proposed method exhibited low limit of quantitation as 5.0 and 1.0 ng mL-1 for SMX and TMP, respectively. The recoveries at three spiked levels were between 92.4% to 100.5% for SMX, and 92.7% to 102.6% for TMP, with intra-day and inter-day relative standard deviations no more than 5.3% and 8.6%, respectively. These results well demonstrated that the combination of hydrophobic (or π-π) interaction and B-N coordination played an important role in the extraction of hydrophobic and nitrogen-containing compounds.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Resíduos de Drogas , Produtos da Carne/análise , Microextração em Fase Sólida/métodos , Sulfametoxazol , Trimetoprima , Ácidos Borônicos/química , Resíduos de Drogas/análise , Resíduos de Drogas/química , Resíduos de Drogas/isolamento & purificação , Polímeros/química , Sulfametoxazol/análise , Sulfametoxazol/química , Sulfametoxazol/isolamento & purificação , Trimetoprima/análise , Trimetoprima/química , Trimetoprima/isolamento & purificação
4.
Anal Bioanal Chem ; 410(1): 247-257, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29098333

RESUMO

In this work, we reported an effective method for the synthesis of a multirecognition magnetic molecularly imprinted polymer (MMIP) with atom transfer radical polymerization (ATRP), using 2,4-diamino-6-methyl-1,3,5-triazine as pseudo-template. The resulting MMIP was characterized in detail by Fourier transform-infrared (FT-IR) spectra, scanning electron microscopy (SEM), thermogravimetic analysis (TGA), and vibrating sample magnetometry (VSM). These results indicated the successful synthesis of MMIP with sufficient thermal stability and magnetic properties. The adsorption experiments were carried out to evaluate the specific selectivity of MMIP related to the spatial structure of target molecules. The MMIP exhibited multirecognition ability and excellent binding capability for melamine (MEL), cyromazine (CYR), triamterene (TAT), diaveridine (DVD), and trimethoprim (TME), and the apparent maximum number of binding sites (Q max) was 77.5, 75.2, 72.5, 69.9, and 70.4 µmol g-1, respectively. The multirecognition MMIP not only possessed adequate magnetic responsiveness for fast separation but also avoided the risk of template leakage on trace component analysis. Therefore, it was suitable for serving as a magnetic solid-phase extraction (MSPE) adsorbent. MSPE coupled with high-performance liquid chromatography analysis was applied to enrich and separate five target molecules from three samples. Recoveries for all target molecules ranged from 81.6 to 91.5% with relative standard deviations of no more than 4.1% (n = 3). Graphical abstract Multirecognition property of magnetic molecularly imprinted polymer prepared with pseudo template.

5.
Anal Bioanal Chem ; 409(1): 201-211, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27744483

RESUMO

In this study, a new molecularly imprinted polymer chiral stationary phase (MIP-CSP) was prepared utilizing molecular crowding agent for improvement the selective separation ability. S-amlodipine (S-AML), methacrylic acid (MAA), ethylene glycol dimethacrylate (EDMA), and polymethyl methacrylate (PMMA) were selected as template, functional monomer, cross-linker, and molecular crowding agent, respectively. The composition of formulas for MIP-CSP was optimized, and the permeability and structural feature of resultant MIP-CSP were characterized. The effect of mobile-phase composition, including ionic strength, pH, and organic modifier content, was investigated for achieving the selective separation of rac-amlodipine (rac-AML) on MIP-CSP. The baseline separation of rac-AML was achieved with resolution of 1.58, whereas no selective separation was observed on the imprinted monolith without molecular crowding agent. The perturbation chromatography method was successfully applied to evaluate the recognition mechanism of templates on MIP-CSP. The retention time of S-AML detected in typical analytical conditions was obviously greater than the time of negative peak derived from perturbation, which indicated the retention of template may be due to the imprinted cavities on MIP-CSP. Additionally, the result of Van't Hoff analysis indicated that the chiral separation of rac-AML on MIP-CSP was an entropy-driven process, which supported the molecular imprinting theory. These results reveal that molecular crowding is a potential strategy for preparation of MIP-CSP with excellent selective separation ability. Graphical Abstract Improvement of chiral separation on molecularly imprinted monolith by molecular crowding condition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...