Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(27): 18584-18591, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38932640

RESUMO

A simple aqueous complexing system of UO22+ with F- is selected to systematically illustrate the application of Raman spectroscopy in exploring uranyl(VI) chemistry. Five successive complexes, UO2F+, UO2F2(aq), UO2F3-, UO2F42-, and UO2F53-, are identified, as well as the formation constants except for the 1 : 5 species UO2F53-, which was experimentally observed here for the first time. The standard relative molar Raman scattering intensity for each species is obtained by deconvolution of the spectra collected during titrations. The results of relativistic quantum chemical first-principles and ab initio calculations are presented for the complete set of [UO2(H2O)mFn]2-n complexes (n = 0-5), both for the gas phase as well as for aqueous solution modelling bulk water using the conductor-like screening model. Electronic structure calculations at the Møller-Plesset second-order perturbation theory level provide accurate geometrical parameters and in particular reveal that k water molecules in the second coordination sphere coordinating to the F- ligands in the resulting [UO2(H2O)mFn]2-n(H2O)k complexes need to be treated explicitly in order to obtain vibrational frequencies in very good agreement with experimental data. The thermodynamics and structural information obtained in this work and the developed methodology could be instructive for the future experimental and computational research on the complexation of the uranyl ion.

2.
J Colloid Interface Sci ; 659: 213-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176231

RESUMO

The effect of aggregation configuration of molecular fluorophore citrazinic acid (CZA) on the photoluminescence (PL) properties of carbon dots (CDs) has been investigated using first-principles method. The structural stability of all aggregates has been analyzed, and the results show that the most stable structures are J-type CZA aggregates with head-to-tail configurations and the CZA/CD aggregates are bonded by replacing H atoms on the CD edges with de-OH from the pyridine ring of CZA. The luminescent properties of CZA/CD aggregates are mainly affected by the binding modes and binding sites. When the sites belong to electron-donating groups, electron-withdrawing groups or sp2 domain, the PL spectra of CDs are shifted and the luminescent intensities are significantly enhanced. The results suggest that covalently bonded CZA/CD aggregates are responsible for the high fluorescence quantum yield of CD. Moreover, the distance between the centers of the two pyridine rings in H-type CZA dimers less than 3.5 Å is prone to π-π stacking, leading to fluorescence quenching of aggregates. The present work is helpful in understanding the effect of molecular fluorophores on the PL properties of CDs and provides theoretical guidance for the controllable synthesis of CDs.

3.
RSC Adv ; 13(40): 27714-27721, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37727316

RESUMO

The influence of sp2- and sp3-hybridized carbon coexisting in carbon cores on fluorescence characteristics of carbon dots (CDs) was revealed by density functional theory calculations. Based on the constructed coronene-like structures, the fluorescence emission spectra, transition molecular orbital pairs and several physical quantities describing the distribution of electrons and holes were investigated. The results indicate that due to the interaction between sp2 and sp3 carbon atoms, two main factors including the hyperconjugative effect and the separation of sp2 domain by sp3 carbon atoms can regulate the fluorescence wavelength. By analyzing the transition molecular orbital pairs, it was found that the fluorescence wavelength has a close correlation with the conjugation length, suggesting that the conjugation length can predict the shift of the emission spectra of CDs. The theoretical results provide a comprehensive understanding of fluorescence mechanism and help to synthesize CDs with expected fluorescence wavelength.

4.
RSC Adv ; 13(34): 23947-23954, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577087

RESUMO

Lipophilic N,N,N',N'-tetraalkyl-diglycolamides (TRDGAs) are promising extractants for actinides separation in spent nuclear fuel reprocessing. Usually, in the extracted complexes of actinide and lanthanide ions of various oxidation states, the metal ions are completely surrounded by 2 or 3 TRDGA molecules, and the counter anions do not directly coordinate with them. In contrast, the extracted complexes of U(iv) from different media presenting different absorption spectra indicate that the anions (Cl- and NO3-) are directly involved in the coordination with U(iv) in the first inner sphere. Based on this exceptional observation in solvent extraction, taking the coordination of U(iv) with N,N,N',N'-tetramethyl-diglycolamide (TMDGA, the smallest analogue of TRDGA) as the research object, we mimic the behaviours of counterions (Cl- and NO3-) and the water molecule during coordination of TMDGA with U(iv), especially combining with the simulation of the absorption spectra. We demonstrate that during the complexing of TMDGA to U(iv), the counterion Cl- will occupy one coordination number in the inner coordination sphere, and NO3- will occupy two by bidentate type; however, the ubiquitous water cannot squeeze in the inner coordination sphere. In addition, the coordination of Cl- and NO3- is proved to favour the extraction with the lower binding energy. Moreover, the simulation of absorption spectra is in good agreement with the observation from experiments, further verifying the aforementioned conclusion. This work in some way will provide guidance to improve the computation methods in research of actinides by mimicking the absorption spectra of actinide ions in different complexes.

5.
ACS Omega ; 8(27): 24332-24340, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457448

RESUMO

A new graphene oxide (GO) model with reasonable functional group types and distribution modes was proposed by integrating potentiometric titrations and ab initio calculations. Due to the complex synthesis mechanism, the atomic structure of GO has been controversial for a long time. Here, we use density functional theory calculations to mimic the oxidation process, and a series of GO fragments (GOFs) were deduced. A new pKa calculation method (RCDPKA) developed specifically in this work was further used to predict pKa values of the fragments. Then, we performed potentiometric titrations on four different GO samples to confirm the existence of these GOFs and determine the content of functional groups. Interestingly, different GO samples present the same pKa values in titration, and the results are consistent with the predicted ones. Based on the evidence from titration and calculation, prominent correlations between functional groups could be found. Groups at the edges are mainly double-interactive carboxyls (pKa1 ≈ 3.4, pKa2 ≈ 5.7) and double-adjacent phenolic hydroxyls (pKa1 ≈ 8.8, pKa2 ≈ 12.1), while groups on the plane are mainly collocated epoxies and hydroxyls (pKa1 ≈ 11.1, pKa2 ≈ 13.8) on both sides of the plane with a meta-positional hydrogen bond interaction. These findings were further validated by multiple characterizations and GO modifications. These results not only stimulate a fundamental understanding of the GO structure but also provide a quantitative analysis method for functional groups on GO.

6.
ACS Appl Mater Interfaces ; 14(50): 56353-56362, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36511382

RESUMO

Discovery of remarkable porous materials for CO2 capture from wet flue gas is of great significance to reduce the CO2 emissions, but elucidating the most critical structure features for boosting CO2 capture capabilities remains a great challenge. Here, machine-learning-assisted Monte Carlo computational screening on 516 experimental covalent organic frameworks (COFs) identifies the superior secondary building units (SBUs) for wet flue gas separation using COFs, which are tetraphenylporphyrin units for boosting CO2 adsorption uptake and functional groups for boosting CO2/N2 selectivity. Accordingly, 1233 COFs are assembled using the identified superior SBUs. Density functional theory calculation analysis on frontier orbitals, electrostatic potential, and binding energy reveals the influencing mechanism of the SBUs on the wet flue gas separation performance. The "electron-donating-induced vdW interaction" effect is discovered to construct the better-performing COFs, which can achieve high CO2 uptake of 4.4 mmol·g-1 with CO2/N2 selectivity of 104.8. Meanwhile, the "electron-withdrawing-induced vdW + electrostatic coupling interaction" effect is unearthed to construct the better-performing COFs with superior CO2/N2 selectivity, which can reach 277.6 with CO2 uptake of 2.2 mmol·g-1; in this case, H2O plays a positive contribution in improving CO2/N2 selectivity. This work provides useful guidelines for designing optimized two-dimensional-COF adsorbents for wet flue gas separation.

7.
Nat Commun ; 13(1): 3918, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798729

RESUMO

By integrating multi-scale computational simulation with photo-regulated macromolecular synthesis, this study presents a new paradigm for smart design while customizing polymeric adsorbents for uranium harvesting from seawater. A dissipative particle dynamics (DPD) approach, combined with a molecular dynamics (MD) study, is performed to simulate the conformational dynamics and adsorption process of a model uranium grabber, i.e., PAOm-b-PPEGMAn, suggesting that the maximum adsorption capacity with atomic economy can be achieved with a preferred block ratio of 0.18. The designed polymers are synthesized using the PET-RAFT polymerization in a microfluidic platform, exhibiting a record high adsorption capacity of uranium (11.4 ± 1.2 mg/g) in real seawater within 28 days. This study offers an integrated perspective to quantitatively assess adsorption phenomena of polymers, bridging metal-ligand interactions at the molecular level with their spatial conformations at the mesoscopic level. The established protocol is generally adaptable for target-oriented development of more advanced polymers for broadened applications.

8.
RSC Adv ; 11(58): 36391-36397, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35494389

RESUMO

The complexation of solid uranyl nitrate with tri-n-butyl phosphate (TBP) in supercritical CO2 is quite different from that of a liquid-liquid extraction system because fewer water molecules are involved. Here, the complexation mechanism was investigated by molecular dynamics simulation, emphasising on speciation distribution analysis. In the anhydrous uranyl nitrate system, poly-core uranyl-TBP species [UO2(NO3)2]2·3TBP and [UO2(NO3)2]3·3TBP were formed in addition to the predominant [UO2(NO3)2]·1TBP and [UO2(NO3)2]·2TBP species. The poly-core species was mainly constructed via the linkage of U[double bond, length as m-dash]O⋯U contributed by pre-developed [UO2(NO3)2]·1TBP species. However, in the hydrated uranyl nitrate system, TBP·[UO2(NO3)2]·H2O species form, preventing the formation of the poly-core species. The complexation developed differently depending on the TBP to the uranyl nitrate ratio, the solute densities and the participation of water. It suggested that the kinetically favoring species would gradually convert into the thermodynamically stable species [UO2(NO3)2]·2TBP by ligand exchange.

9.
Chem Commun (Camb) ; 56(47): 6376-6379, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32390018

RESUMO

The complexity of secondary building units (SBUs), an indicator that can not only be calculated but also visually estimated, is proposed as a highly indicative predictor of hydrogen storage performance. With optimal pore sizes and void fractions, selecting COFs consisting of simple SBUs greatly improves the probability of top-performing COFs towards the ultimate DOE hydrogen storage target, as an easy principle for experimentalists to select hydrogen adsorbents.

10.
Chem Asian J ; 14(20): 3688-3693, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31380607

RESUMO

CH4 /N2 separation is one of the great challenges in gas separation, which is of scientific and practical importance, such as in the upgrading of unconventional natural gas. Unfortunately, the separation performance is still quite low so far mainly due to their very close physical properties. In this work, a high-throughput computational screening method was performed to develop metal-organic frameworks (MOFs) for efficient CH4 /N2 separation. General designing rules as well as the correlation between selectivity and our proposed adsorbility (AD) parameter were obtained by carrying out systematic GCMC simulations of the existing 5109 CoRE MOFs. With the aid of this information, five virtual MOFs were screened out from the large database with 303 991 generated MOFs constructed in our previous work, exhibiting much higher selectivities than all the reported values. Among them, the selectivity of Zn-PYZ-BPY-1 can reach over 29.0, about 2.4 times of the highest value reported in the literature. These results may not only suggest promising candidates for CH4 /N2 separation but also provide useful information for large screening of MOFs for other specific separation mixtures.

11.
Nat Commun ; 9(1): 5274, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30531790

RESUMO

Materials genomics represents a research mode for materials development, for which reliable methods for efficient materials construction are essential. Here we present a methodology for high-throughput construction of covalent organic frameworks (COFs) based on materials genomics strategy, in which a gene partition method of genetic structural units (GSUs) with reactive sites and quasi-reactive assembly algorithms (QReaxAA) for structure generation were proposed by mimicking the natural growth processes of COFs, leading to a library of 130 GSUs and a database of ~470,000 materials containing structures with 10 unreported topologies as well as the existing COFs. As a proof-of-concept example, two generated 3D-COFs with ffc topology and two 2D-COFs with existing topologies were successfully synthesized. This work not only presents useful genomics methods for developing COFs and largely extended the COF structures, but also will stimulate the switch of materials development mode from trial-and-error to theoretical prediction-experimental validation.


Assuntos
Técnicas de Química Sintética/métodos , Bases de Dados de Compostos Químicos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/síntese química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Tamanho da Partícula , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...