Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(15): e2310818, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38190432

RESUMO

Tumor calcification is found to be associated with the benign prognostic, and which shows considerable promise as a somewhat predictive index of the tumor response clinically. However, calcification is still a missing area in clinical cancer treatment. A specific strategy is proposed for inducing tumor calcification through the synergy of calcium peroxide (CaO2)-based microspheres and transcatheter arterial embolization for the treatment of hepatocellular carcinoma (HCC). The persistent calcium stress in situ specifically leads to powerful tumor calcioptosis, resulting in diffuse calcification and a high-density shadow on computed tomography that enables clear localization of the in vivo tumor site and partial delineation of tumor margins in an orthotopic HCC rabbit model. This osmotic calcification can facilitate tumor clinical diagnosis, which is of great significance in differentiating tumor response during early follow-up periods. Proteome and phosphoproteome analysis identify that calreticulin (CALR) is a crucial target protein involved in tumor calcioptosis. Further fluorescence molecular imaging analysis also indicates that CALR can be used as a prodromal marker of calcification to predict tumor response at an earlier stage in different preclinical rodent models. These findings suggest that upregulated CALR in association with tumor calcification, which may be broadly useful for quick visualization of tumor response.


Assuntos
Carcinoma Hepatocelular , Embolização Terapêutica , Neoplasias Hepáticas , Animais , Coelhos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Detecção Precoce de Câncer , Microesferas
2.
Nanomicro Lett ; 14(1): 145, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35849180

RESUMO

As the indispensable second cellular messenger, calcium signaling is involved in the regulation of almost all physiological processes by activating specific target proteins. The importance of calcium ions (Ca2+) makes its "Janus nature" strictly regulated by its concentration. Abnormal regulation of calcium signals may cause some diseases; however, artificial regulation of calcium homeostasis in local lesions may also play a therapeutic role. "Calcium overload," for example, is characterized by excessive enrichment of intracellular Ca2+, which irreversibly switches calcium signaling from "positive regulation" to "reverse destruction," leading to cell death. However, this undesirable death could be defined as "calcicoptosis" to offer a novel approach for cancer treatment. Indeed, Ca2+ is involved in various cancer diagnostic and therapeutic events, including calcium overload-induced calcium homeostasis disorder, calcium channels dysregulation, mitochondrial dysfunction, calcium-associated immunoregulation, cell/vascular/tumor calcification, and calcification-mediated CT imaging. In parallel, the development of multifunctional calcium-based nanomaterials (e.g., calcium phosphate, calcium carbonate, calcium peroxide, and hydroxyapatite) is becoming abundantly available. This review will highlight the latest insights of the calcium-based nanomaterials, explain their application, and provide novel perspective. Identifying and characterizing new patterns of calcium-dependent signaling and exploiting the disease element linkage offer additional translational opportunities for cancer theranostics.

3.
BMC Public Health ; 22(1): 1001, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581623

RESUMO

BACKGROUND: Climate change caused by environmental pollution is the most important one of many environmental health hazards currently faced by human beings. In particular, the extreme temperature is an important risk factor for death from respiratory and circulatory diseases. This study aims to explore the meteorological-health effect and find out the vulnerable individuals of extreme temperature events in a less developed city in western China. METHOD: We collected the meteorological data and data of death caused by respiratory and circulatory diseases in Mianyang City from 2013 to 2019. The nonlinear distributed lag model and the generalized additive models were combined to study the influence of daily average temperature (DAT) on mortality from respiratory and circulatory diseases in different genders, ages. RESULTS: The exposure-response curves between DAT and mortality from respiratory and circulatory diseases presented a nonlinear characteristic of the "V" type. Cumulative Relative Risk of 30 days (CRR30) of deaths from respiratory diseases with 4.48 (2.98, 6.73) was higher than that from circulatory diseases with 2.77 (1.96, 3.92) at extremely low temperature, while there was no obvious difference at extremely high temperature. The health effects of low temperatures on the respiratory system of people of all ages and genders were persistent, while that of high temperatures were acute and short-term. The circulatory systems of people aged < 65 years were more susceptible to acute effects of cold temperatures, while the effects were delayed in females and people aged ≥65 years. CONCLUSION: Both low and high temperatures increased the risk of mortality from respiratory and circulatory diseases. Cold effects seemed to last longer than heat did.


Assuntos
Doenças Cardiovasculares , Transtornos Respiratórios , China/epidemiologia , Cidades/epidemiologia , Temperatura Baixa , Feminino , Temperatura Alta , Humanos , Masculino , Mortalidade , Fatores de Risco , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...