Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Food Chem X ; 22: 101479, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38883911

RESUMO

This research investigated the efficacy of fucoidan-based coatings in preserving nectarine fruits at room temperature. The present study compared the preservation effects of different fucoidan concentrations (1%, 3%, 5%) with distilled water serving as a control (0%). The findings revealed that the addition of fucoidan dose-dependently improved the room temperature preservation quality of the nectarines. Notably, a 5% fucoidan concentration markedly delays the onset of the respiratory peak in nectarines. On day 14 of storage, the plants were subsequently cultured on a 5% fucoidan coating (F5), which exhibited a weight loss rate of 5.87%, a spoilage rate of 18.33%, a hardness of 3.87 kg/cm², a soluble solid content of 11.47%, a titratable acid content of 0.29% and an ascorbic acid content of 2.58%. The overall acceptability score was 7.83. These results demonstrated that coating with fucoidan is an effective method for the preservation of nectarines.

2.
Fish Shellfish Immunol ; 147: 109458, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369069

RESUMO

Fucoidan, a water-soluble heteropolysaccharide predominantly found in brown algae, comprises active components such as fucose and sulfate groups. This polysaccharide exhibits a range of physiological activities, including antioxidant, antiviral, anticancer, and immunomodulatory activities. In light of the global prohibition of antibiotics in animal feed, there is increasing interest in identifying safe, natural antibiotic alternatives that lack toxic side effects. This study focuses on analysing the impact of fucoidan in animal husbandry and provides a comprehensive review of the methods for preparing fucoidan, along with its physical and chemical characteristics. Its applications in the breeding of aquatic species, livestock, and poultry have also been summarized. The aim of this study was to establish a theoretical framework for the use of fucoidan in animal husbandry and to contribute to the theoretical underpinnings of the animal breeding and feed industries.


Assuntos
Phaeophyceae , Animais , Antioxidantes , Polissacarídeos
3.
Front Bioeng Biotechnol ; 9: 813079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35223821

RESUMO

Dextran has aroused increasingly more attention as the primary pollutant in sucrose production and storage. Although enzymatic hydrolysis is more efficient and environmentally friendly than physical methods, the utilization of dextranase in the sugar industry is restricted by the mismatch of reaction conditions and heterogeneity of hydrolysis products. In this research, a dextranase from Arthrobacter oxydans G6-4B was purified and characterized. Through anion exchange chromatography, dextranase was successfully purified up to 32.25-fold with a specific activity of 288.62 U/mg protein and a Mw of 71.12 kDa. The optimum reaction conditions were 55°C and pH 7.5, and it remained relatively stable in the range of pH 7.0-9.0 and below 60°C, while significantly inhibited by metal ions, such as Ni+, Cu2+, Zn2+, Fe3+, and Co2+. Noteworthily, a distinction of previous studies was that the hydrolysates of dextran were basically isomalto-triose (more than 73%) without glucose, and the type of hydrolysates tended to be relatively stable in 30 min; dextranase activity showed a great influence on hydrolysate. In conclusion, given the superior thermal stability and simplicity of hydrolysates, the dextranase in this study presented great potential in the sugar industry to remove dextran and obtain isomalto-triose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...