Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 8(1): 57, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33750773

RESUMO

Root-shoot communication has a critical role in plant adaptation to environmental stress. Grafting is widely applied to enhance the abiotic stress tolerance of many horticultural crop species; however, the signal transduction mechanism involved in this tolerance remains unknown. Here, we show that pumpkin- or figleaf gourd rootstock-enhanced cold tolerance of watermelon shoots is accompanied by increases in the accumulation of melatonin, methyl jasmonate (MeJA), and hydrogen peroxide (H2O2). Increased melatonin levels in leaves were associated with both increased melatonin in rootstocks and MeJA-induced melatonin biosynthesis in leaves of plants under cold stress. Exogenous melatonin increased the accumulation of MeJA and H2O2 and enhanced cold tolerance, while inhibition of melatonin accumulation attenuated rootstock-induced MeJA and H2O2 accumulation and cold tolerance. MeJA application induced H2O2 accumulation and cold tolerance, but inhibition of JA biosynthesis abolished rootstock- or melatonin-induced H2O2 accumulation and cold tolerance. Additionally, inhibition of H2O2 production attenuated MeJA-induced tolerance to cold stress. Taken together, our results suggest that melatonin is involved in grafting-induced cold tolerance by inducing the accumulation of MeJA and H2O2. MeJA subsequently increases melatonin accumulation, forming a self-amplifying feedback loop that leads to increased H2O2 accumulation and cold tolerance. This study reveals a novel regulatory mechanism of rootstock-induced cold tolerance.

2.
Plant Sci ; 303: 110761, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487347

RESUMO

Seed germination is a vital stage in the plant life-cycle that greatly contributes to plant establishment. Melatonin has been shown to promote seed germination under various environmental stresses; however, the mechanism remains largely underexplored. Here, we reported that melatonin antagonized abscisic acid (ABA) to promote seed germination by regulating ABA and gibberellic acid (GA3) balance. Transcriptomic analysis revealed that such a role of melatonin was associated with Ca2+ and redox signaling. Melatonin pretreatment induced Ca2+ efflux accompanied by an up-regulation of vacuolar H+/Ca2+ antiporter 3 (CAX3). AtCAX3 deletion in Arabidopsis exhibited reduced Ca2+ efflux. Inhibition of Ca2+ efflux in the seeds of melon and Arabidopsis mutant AtCAX3 compromised melatonin-induced germination under ABA stress. Melatonin increased H2O2 accumulation, and H2O2 pretreatment decreased ABA/GA3 ratio and promoted seed germination under ABA stress. However, complete inhibition of H2O2 accumulation abolished melatonin-induced ABA and GA3 balance and seed germination. Our study reveals a novel regulatory mechanism in which melatonin counteracts ABA to induce seed germination that essentially involves CAX3-mediated Ca2+ efflux and H2O2 accumulation, which, in turn, regulate ABA and GA3 balance by promoting ABA catabolism and/or GA3 biosynthesis.


Assuntos
Ácido Abscísico/antagonistas & inibidores , Cálcio/metabolismo , Germinação/fisiologia , Peróxido de Hidrogênio/metabolismo , Melatonina/fisiologia , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Ácido Abscísico/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Giberelinas/metabolismo , Glutationa/metabolismo , Melatonina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reação em Cadeia da Polimerase , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...