Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 394: 122540, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32203718

RESUMO

Catalytic oxidation of CO at ambient temperature is an important reaction for many environmental applications. Here, we employed a defect engineering strategy to design an extraordinarily effective Sn-doped Co3O4 nanorods (NRs) catalyst for CO oxidation. Our combined theoretical and experimental data demonstrated that Co2+ in the lattice of Co3O4 were substituted by Sn4+. Based on a variety of characterizations and kinetic studies, this catalyst was found to combine the advantages of the nanorod-like morphology for largely exposing catalytically active Co3+ sites and the promotional effect of Sn dopant for adjusting the textural/redox properties. Additionally, the Sn-substituted Co3O4 NRs can be further activated via heat treatment to achieve low-temperature CO oxidation (T100 ∼ -100 °C) with excellent stability at ambient temperature. This study reveals the importance of Sn-substitution of inactive Co2+ in Co3O4 and provides an ultra-efficient catalyst for CO oxidation, making this robust material one of the most powerful catalysts available up to now.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...