Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 289(9): 2540-2561, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34796659

RESUMO

Cardiovascular diseases are the leading cause of death globally and more than four out of five cases are due to ischemic events. Cardiac fibroblasts (CF) contribute to normal heart development and function, and produce the post-ischemic scar. Here, we characterize the biochemical and functional aspects related to CF endurance to ischemia-like conditions. Expression data mining showed that cultured human CF (HCF) express more BCL2 than pulmonary and dermal fibroblasts. In addition, gene set enrichment analysis showed overrepresentation of genes involved in the response to hypoxia and oxidative stress, respiration and Janus kinase (JAK)/Signal transducer and Activator of Transcription (STAT) signaling pathways in HCF. BCL2 sustained survival and proliferation of cultured rat CF, which also had higher respiration capacity and reactive oxygen species (ROS) production than pulmonary and dermal fibroblasts. This was associated with higher expression of the electron transport chain (ETC) and antioxidant enzymes. CF had high phosphorylation of JAK2 and its effectors STAT3 and STAT5, and their inhibition reduced viability and respiration, impaired ROS control and reduced the expression of BCL2, ETC complexes and antioxidant enzymes. Together, our results identify molecular and biochemical mechanisms conferring survival advantage to experimental ischemia in CF and show their control by the JAK2/STAT signaling pathway. The presented data point to potential targets for the regulation of cardiac fibrosis and also open the possibility of a general mechanism by which somatic cells required to acutely respond to ischemia are constitutively adapted to survive it.


Assuntos
Antioxidantes , Janus Quinase 2 , Animais , Fibroblastos/metabolismo , Isquemia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Respiração , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
2.
Sensors (Basel) ; 9(7): 5810-24, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22346728

RESUMO

Salmonella enterica is a major food-borne pathogen of world-wide concern. Sensitive and rapid detection methods to assess product safety before retail distribution are highly desirable. Since Salmonella is most commonly associated with poultry products, an evanescent wave fiber-optic assay was developed to detect Salmonella in shell egg and chicken breast and data were compared with a time-resolved fluorescence (TRF) assay. Anti-Salmonella polyclonal antibody was immobilized onto the surface of an optical fiber using biotin-avidin interactions to capture Salmonella. Alexa Fluor 647-conjugated antibody (MAb 2F-11) was used as the reporter. Detection occurred when an evanescent wave from a laser (635 nm) excited the Alexa Fluor and the fluorescence was measured by a laser-spectrofluorometer at 710 nm. The biosensor was specific for Salmonella and the limit of detection was established to be 10(3) cfu/mL in pure culture and 10(4) cfu/mL with egg and chicken breast samples when spiked with 10(2) cfu/mL after 2-6 h of enrichment. The results indicate that the performance of the fiber-optic sensor is comparable to TRF, and can be completed in less than 8 h, providing an alternative to the current detection methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...