Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-433449

RESUMO

We have identified camelid single-domain antibodies (VHHs) that cross-neutralize SARS-CoV-1 and -2, such as VHH72, which binds to a unique highly conserved epitope in the viral receptor-binding domain (RBD) that is difficult to access for human antibodies. Here, we establish a protein engineering path for how a stable, long-acting drug candidate can be generated out of such a VHH building block. When fused to human IgG1-Fc, the prototype VHH72 molecule prophylactically protects hamsters from SARS-CoV-2. In addition, we demonstrate that both systemic and intranasal application protects hACE-2-transgenic mice from SARS-CoV-2 induced lethal disease progression. To boost potency of the lead, we used structure-guided molecular modeling combined with rapid yeast-based Fc-fusion prototyping, resulting in the affinity-matured VHH72_S56A-Fc, with subnanomolar SARS-CoV-1 and -2 neutralizing potency. Upon humanization, VHH72_S56A was fused to a human IgG1 Fc with optimized manufacturing homogeneity and silenced effector functions for enhanced safety, and its stability as well as lack of off-target binding was extensively characterized. Therapeutic systemic administration of a low dose of VHH72_S56A-Fc antibodies strongly restricted replication of both original and D614G mutant variants of SARS-CoV-2 virus in hamsters, and minimized the development of lung damage. This work led to the selection of XVR011 for clinical development, a highly stable anti-COVID-19 biologic with excellent manufacturability. Additionally, we show that XVR011 is unaffected in its neutralizing capacity of currently rapidly spreading SARS-CoV-2 variants, and demonstrate its unique, wide scope of binding across the Sarbecovirus clades.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-419242

RESUMO

Favipiravir and Molnupiravir, orally available antivirals, have been reported to exert antiviral activity against SARS-CoV2. In recent days preliminary efficacy data have been reported in COVID-19 patients. We here studied the combined antiviral effect of the drugs in the SARS-CoV2 hamster infection model. We first demonstrate that Molnupiravir can reduce infectious virus titers in lungs of infected animals in a dose-dependent manner by up to 3.5 log10 which is associated with a marked improvement of virus-induced lung pathology. When animals are treated with a combination of suboptimal doses of Molnupiravir and Favipiravir (that each alone result in respectively a 1.3 log10 and 1.1 log10 reduction of infectious virus titers in the lungs), a marked combined potency is observed. Infectious virus titers in the lungs of animals treated with the combo are on average reduced by 4.5 log10 and infectious virus are no longer detected in the lungs of 60% of treated infected animals. Both drugs result in an increased mutation frequency of the remaining viral RNA recovered from the lungs. In the combo-treated hamsters an increased frequency of C-to-T and G-to-A mutations in the viral RNA is observed as compared to the single treatment groups which may explain the pronounced antiviral potency of the combination. Our findings may lay the basis for the design of clinical studies to test the efficacy of the combination of Molnupiravir and Favipiravir in the treatment of COVID-19.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-159053

RESUMO

SARS-CoV-2 rapidly spread around the globe after its emergence in Wuhan in December 2019. With no specific therapeutic and prophylactic options available, the virus was able to infect millions of people. To date, close to half a million patients succumbed to the viral disease, COVID-19. The high need for treatment options, together with the lack of small animal models of infection has led to clinical trials with repurposed drugs before any preclinical in vivo evidence attesting their efficacy was available. We used Syrian hamsters to establish a model to evaluate antiviral activity of small molecules in both an infection and a transmission setting. Upon intranasal infection, the animals developed high titers of SARS-CoV-2 in the lungs and pathology similar to that observed in mild COVID-19 patients. Treatment of SARS-CoV-2-infected hamsters with favipiravir or hydroxychloroquine (with and without azithromycin) resulted in respectively a mild or no reduction in viral RNA and infectious virus. Micro-CT scan analysis of the lungs showed no improvement compared to non-treated animals, which was confirmed by histopathology. In addition, both compounds did not prevent virus transmission through direct contact and thus failed as prophylactic treatments. By modelling the PK profile of hydroxychloroquine based on the trough plasma concentrations, we show that the total lung exposure to the drug was not the limiting factor. In conclusion, we here characterized a hamster infection and transmission model to be a robust model for studying in vivo efficacy of antiviral compounds. The information acquired using hydroxychloroquine and favipiravir in this model is of critical value to those designing (current and) future clinical trials. At this point, the data here presented on hydroxychloroquine either alone or combined with azithromycin (together with previously reported in vivo data in macaques and ferrets) provide no scientific basis for further use of the drug in humans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...