Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Anal Chem ; 95(17): 6818-6827, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37075319

RESUMO

The steady-state voltammetric responses of n-type Si(100) semiconductor ultramicroelectrodes (SUMEs) immersed in air- and water-free methanolic electrolytes have been measured. The response characteristics of these SUMEs in the absence of illumination were modeled and understood through a framework that describes the distribution of the applied potential across the semiconductor/electrolyte contact using four discrete regions: the semiconductor space charge, surface, Helmholtz, and diffuse layers. The latter region was described by the full Gouy-Chapman model. This framework afforded insight on how relevant parameters such as the semiconductor band edge potentials, the reorganization energies for charge transfer, the standard potential of redox species in solution, the density and energy of surface state populations, and the presence of an insulating (tunneling) layer individually and collectively dictate the observable current-potential responses. With this information, the methoxylation of Si surfaces was evaluated by analysis of the change in voltammetric responses during the course of prolonged immersion in methanol. The electrochemical data were consistent with a surface methoxylation mechanism that depended on the standard potential of redox species dissolved in solution. Estimates of the enthalpies of adsorption as well as the potential-dependent rate constant for surface methoxylation were obtained. Collectively, these measurements supported the contention that the rates of Si surface reactions can be systematically tuned by exposure to dissolved outer-sphere electron acceptors. Moreover, the data represent the quantitative utility of voltammetry with SUMEs for the measurement of semiconductor/liquid contacts.

3.
ACS Appl Mater Interfaces ; 11(28): 25115-25122, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31264402

RESUMO

Catalytic MoSx thin films have been directly photoelectrodeposited on GaInP2 photocathodes for stable photoelectrochemical hydrogen generation. Specifically, the MoSx deposition conditions were controlled to obtain 8-10 nm films directly on p-GaInP2 substrates without ancillary protective layers. The films were nominally composed of MoS2, with additional MoOxSy and MoO3 species detected and showed no long-range crystalline order. The as-deposited material showed excellent catalytic activity toward the hydrogen evolution reaction relative to bare p-GaInP2. Notably, no appreciable photocurrent reduction was incurred by the addition of the photoelectrodeposited MoSx catalyst to the GaInP2 photocathode under light-limited operating conditions, highlighting the advantageous optical properties of the film. The MoSx catalyst also imparted enhanced durability toward photoelectrochemical hydrogen evolution in acidic conditions, maintaining nearly 85% of the initial photocurrent after 50 h of electrolysis. In total, this work demonstrates a simple method for producing dual-function catalyst/protective layers directly on high-performance, planar III-V photoelectrodes for photoelectrochemical energy conversion.

4.
Anal Chem ; 90(20): 12261-12269, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30264995

RESUMO

Semiconductor ultramicroelectrodes (SUMEs) were prepared by photolithographic patterning of defined pinholes in dielectric coatings on semiconductor wafers. Methods are reported for interpreting their electrochemical response characteristics in the absence of illumination. Radial diffusion is reconciled with the diode equation to describe the full voltammetric response, allowing direct determination of heterogeneous charge-transfer rate constants and surface quality. The voltammetric responses of n-type Si SUMEs were assessed and showed prototypical UME characteristics with obtainable current densities higher than those of conventional macroscopic electrodes. The SUME voltammetry proved highly sensitive to both native and intentionally grown oxides, highlighting their ability to precisely track dynamic surface conditions reliably through electrochemical measurement. Subsequently, electron transfer from the conduction band of n-Si SUMEs to aqueous Ru(NH3)63+ was determined to occur near optimal exoergicity. In total, this work validates the SUME platform as a new tool to study fundamental charge-transfer properties at semiconductor/liquid junctions.

5.
Langmuir ; 33(37): 9280-9287, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28388079

RESUMO

The direct preparation of crystalline indium antimonide (InSb) by the electrodeposition of antimony (Sb) onto indium (In) working electrodes has been demonstrated. When Sb is electrodeposited from dilute aqueous electrolytes containing dissolved Sb2O3, an alloying reaction is possible between Sb and In if any surface oxide films are first thoroughly removed from the electrode. The presented Raman spectra detail the interplay between the formation of crystalline InSb and the accumulation of Sb as either amorphous or crystalline aggregates on the electrode surface as a function of time, temperature, potential, and electrolyte composition. Electron and optical microscopies confirm that under a range of conditions, the preparation of a uniform and phase-pure InSb film is possible. The cumulative results highlight this methodology as a simple yet potent strategy for the synthesis of intermetallic compounds of interest.

6.
Sci Total Environ ; 537: 453-61, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26284896

RESUMO

The widespread application of silver in consumer products and the resulting contamination of natural environments with silver raise questions about the toxicity of Ag(+) in the ecosystem. Natural organic matter, NOM, which is abundant in water supplies, soil, and sediments, can form stable complexes with Ag(+), altering its bioavailability and toxicity. Herein, the extent and kinetics of Ag(+) binding to NOM, matrix effects on Ag(+) binding to NOM, and the effect of NOM on Ag(+) toxicity to Shewanella oneidensis MR-1 (assessed by the BacLight viability assay) were quantitatively studied with fluorous-phase Ag(+) ion-selective electrodes (ISEs). Our findings show fast kinetics of Ag(+) and NOM binding, weak Ag(+) binding for Suwannee River humic acid, fulvic acid, and aquatic NOM, and stronger Ag(+) binding for Pony Lake fulvic acid and Pahokee Peat humic acid. We quantified the effects of matrix components and pH on Ag(+) binding to NOM, showing that the extent of binding greatly depends on the environmental conditions. The effect of NOM on the toxicity of Ag(+) does not correlate with the extent of Ag(+) binding to NOM, and other forms of silver, such as Ag(+) reduced by NOM, are critical for understanding the effect of NOM on Ag(+) toxicity. This work also shows that fluorous-phase Ag(+) ISEs are effective tools for studying Ag(+) binding to NOM because they can be used in a time-resolved manner to monitor the activity of Ag(+) in situ with high selectivity and without the need for extensive sample preparation.


Assuntos
Prata/toxicidade , Benzopiranos , Substâncias Húmicas , Concentração de Íons de Hidrogênio , Eletrodos Seletivos de Íons , Cinética , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...