Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 36(9): 109646, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469718

RESUMO

Removal of the membrane-tethering signal peptides that target secretory proteins to the endoplasmic reticulum is a prerequisite for proper folding. While generally thought to be removed co-translationally, we report two additional post-targeting functions for the HIV-1 gp120 signal peptide, which remains attached until gp120 folding triggers its removal. First, the signal peptide improves folding fidelity by enhancing conformational plasticity of gp120 by driving disulfide isomerization through a redox-active cysteine. Simultaneously, the signal peptide delays folding by tethering the N terminus to the membrane, until assembly with the C terminus. Second, its carefully timed cleavage represents intramolecular quality control and ensures release of (only) natively folded gp120. Postponed cleavage and the redox-active cysteine are both highly conserved and important for viral fitness. Considering the ∼15% proteins with signal peptides and the frequency of N-to-C contacts in protein structures, these regulatory roles of signal peptides are bound to be more common in secretory-protein biogenesis.


Assuntos
Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp160 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Processamento de Proteína Pós-Traducional , Cisteína , Células HEK293 , Proteína gp120 do Envelope de HIV/genética , Proteína gp160 do Envelope de HIV/genética , HIV-1/genética , HIV-1/crescimento & desenvolvimento , Células HeLa , Humanos , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Sinais Direcionadores de Proteínas , Estabilidade Proteica , Relação Estrutura-Atividade , Carga Viral , Replicação Viral
2.
Elife ; 62017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28753126

RESUMO

Like all other secretory proteins, the HIV-1 envelope glycoprotein gp160 is targeted to the endoplasmic reticulum (ER) by its signal peptide during synthesis. Proper gp160 folding in the ER requires core glycosylation, disulfide-bond formation and proline isomerization. Signal-peptide cleavage occurs only late after gp160 chain termination and is dependent on folding of the soluble subunit gp120 to a near-native conformation. We here detail the mechanism by which co-translational signal-peptide cleavage is prevented. Conserved residues from the signal peptide and residues downstream of the canonical cleavage site form an extended alpha-helix in the ER membrane, which covers the cleavage site, thus preventing cleavage. A point mutation in the signal peptide breaks the alpha helix allowing co-translational cleavage. We demonstrate that postponed cleavage of gp160 enhances functional folding of the molecule. The change to early cleavage results in decreased viral fitness compared to wild-type HIV.


Assuntos
Proteína gp160 do Envelope de HIV/química , Proteína gp160 do Envelope de HIV/metabolismo , HIV-1/fisiologia , Dobramento de Proteína , Sinais Direcionadores de Proteínas , Linhagem Celular , Humanos , Conformação Proteica , Transporte Proteico , Proteólise
3.
J Virol ; 83(1): 368-83, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18922866

RESUMO

The human immunodeficiency virus type 1 envelope glycoprotein (Env) complex is the principal focus of neutralizing antibody-based vaccines. The functional Env complex is a trimer consisting of six individual subunits: three gp120 molecules and three gp41 molecules. The individual subunits have proven unsuccessful as vaccines presumably because they do not resemble the functional Env complex. Variable domains and carbohydrates shield vulnerable neutralization epitopes on the functional Env complex. The deletion of variable loops has been shown to improve gp120's immunogenicity; however, problems have been encountered when introducing such modifications in stabilized Env trimer constructs. To address these issues, we have created a set of V1/V2 and V3 loop deletion variants in the context of complete virus to allow optimization by forced virus evolution. Compensatory second-site substitutions included the addition and/or removal of specific carbohydrates, changes in the disulfide-bonded architecture of the V1/V2 stem, the replacement of hydrophobic residues by hydrophilic and charged residues, and changes in distal parts of gp120 and gp41. These viruses displayed increased sensitivity to neutralizing antibodies, demonstrating the improved exposure of conserved domains. The results show that we can select for functionally improved Env variants with loop deletions through forced virus evolution. Selected evolved Env variants were transferred to stabilized Env trimer constructs and were shown to improve trimer expression and secretion. Based on these findings, we can make recommendations on how to delete the V1/V2 domain from recombinant Env trimers for vaccine and X-ray crystallography studies. In general, virus evolution may provide a powerful tool to optimize Env vaccine antigens.


Assuntos
Evolução Molecular Direcionada , HIV-1/genética , HIV-1/isolamento & purificação , Mutação , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Anticorpos Anti-HIV/imunologia , Antígenos HIV/genética , Antígenos HIV/imunologia , HIV-1/crescimento & desenvolvimento , HIV-1/imunologia , Humanos , Modelos Moleculares , Testes de Neutralização , Estrutura Terciária de Proteína , Deleção de Sequência
4.
Mol Biol Cell ; 19(11): 4707-16, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18753405

RESUMO

The majority of eukaryotic secretory and membrane proteins contain disulfide bonds, which are strongly conserved within protein families because of their crucial role in folding or function. The exact role of these disulfide bonds during folding is unclear. Using virus-driven evolution we generated a viral glycoprotein variant, which is functional despite the lack of an absolutely conserved disulfide bond that links two antiparallel beta-strands in a six-stranded beta-barrel. Molecular dynamics simulations revealed that improved hydrogen bonding and side chain packing led to stabilization of the beta-barrel fold, implying that beta-sheet preference codirects glycoprotein folding in vivo. Our results show that the interactions between two beta-strands that are important for the formation and/or integrity of the beta-barrel can be supported by either a disulfide bond or beta-sheet favoring residues.


Assuntos
Sequência Conservada , Dissulfetos/química , Evolução Molecular , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/química , Dobramento de Proteína , Sequência de Aminoácidos , Anticorpos Antivirais/química , Simulação por Computador , Glicoproteínas/química , Glicoproteínas/metabolismo , HIV-1/imunologia , HIV-1/patogenicidade , HIV-1/fisiologia , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estrutura Secundária de Proteína , Vírion/química , Replicação Viral
5.
Mol Biol Cell ; 19(10): 4298-309, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18653472

RESUMO

Protein folding in the endoplasmic reticulum goes hand in hand with disulfide bond formation, and disulfide bonds are considered key structural elements for a protein's folding and function. We used the HIV-1 Envelope glycoprotein to examine in detail the importance of its 10 completely conserved disulfide bonds. We systematically mutated the cysteines in its ectodomain, assayed the mutants for oxidative folding, transport, and incorporation into the virus, and tested fitness of mutant viruses. We found that the protein was remarkably tolerant toward manipulation of its disulfide-bonded structure. Five of 10 disulfide bonds were dispensable for folding. Two of these were even expendable for viral replication in cell culture, indicating that the relevance of these disulfide bonds becomes manifest only during natural infection. Our findings refine old paradigms on the importance of disulfide bonds for proteins.


Assuntos
Dissulfetos , Proteína gp120 do Envelope de HIV/química , Proteína gp160 do Envelope de HIV/química , Alanina/química , Linfócitos T CD4-Positivos/virologia , Cisteína/química , Dissulfetos/química , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , Oxigênio/química , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Transporte Proteico
6.
FASEB J ; 17(9): 1058-67, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12773488

RESUMO

Human immunodeficiency virus binds and enters cells via the Envelope glycoprotein gp160 at its surface. In infected cells, gp160 is found not only on the plasma membrane but also in the endoplasmic reticulum (ER). Our aim was to establish rate-determining steps in the maturation process of gp160, using a radioactive pulse-chase approach. We found that gp160 has an intricate folding process: disulfide bonds start to form during synthesis but undergo extensive isomerization until the correct native conformation is reached. Removal of the leader peptide critically depends on formation of at least some disulfide bonds in subunit gp120 during folding. Envelope folds extremely slowly and therefore resides in the ER longer than other proteins, but the yield of properly folded molecules is high and degradation is undetectable. The large quantity of gp160 in the ER hence is a result of its slow transit through this compartment. We show here that newly synthesized HIV-1 Envelope glycoprotein apparently follows a slow but high-yield folding path in which co- and post-translational formation of disulfide bonds in gp120, disulfide isomerization and conformation dependent removal of the leader sequence are determining and intertwined events.


Assuntos
Dissulfetos/química , Proteína gp160 do Envelope de HIV/química , Proteína gp160 do Envelope de HIV/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Eletroforese em Gel de Poliacrilamida , Glicosilação , Proteína gp120 do Envelope de HIV/metabolismo , Células HeLa , Humanos , Isomerismo , Cinética , Conformação Proteica , Dobramento de Proteína , Sinais Direcionadores de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...