Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(28)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38830759

RESUMO

Congenital single-sided deafness (SSD) leads to an aural preference syndrome that is characterized by overrepresentation of the hearing ear in the auditory system. Cochlear implantation (CI) of the deaf ear is an effective treatment for SSD. However, the newly introduced auditory input in congenital SSD often does not reach expectations in late-implanted CI recipients with respect to binaural hearing and speech perception. In a previous study, a reduction of the interaural time difference (ITD) sensitivity has been shown in unilaterally congenitally deaf cats (uCDCs). In the present study, we focused on the interaural level difference (ILD) processing in the primary auditory cortex. The uCDC group was compared with hearing cats (HCs) and bilaterally congenitally deaf cats (CDCs). The ILD representation was reorganized, replacing the preference for the contralateral ear with a preference for the hearing ear, regardless of the cortical hemisphere. In accordance with the previous study, uCDCs were less sensitive to interaural time differences than HCs, resulting in unmodulated ITD responses, thus lacking directional information. Such incongruent ITDs and ILDs cannot be integrated for binaural sound source localization. In normal hearing, the predominant effect of each ear is excitation of the auditory cortex in the contralateral cortical hemisphere and inhibition in the ipsilateral hemisphere. In SSD, however, auditory pathways reorganized such that the hearing ear produced greater excitation in both cortical hemispheres and the deaf ear produced weaker excitation and preserved inhibition in both cortical hemispheres.


Assuntos
Córtex Auditivo , Implante Coclear , Sinais (Psicologia) , Perda Auditiva Unilateral , Localização de Som , Gatos , Animais , Localização de Som/fisiologia , Perda Auditiva Unilateral/fisiopatologia , Implante Coclear/métodos , Córtex Auditivo/fisiopatologia , Feminino , Masculino , Estimulação Acústica/métodos , Lateralidade Funcional/fisiologia , Surdez/fisiopatologia , Surdez/congênito , Surdez/cirurgia
2.
Hear Res ; 449: 109032, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797035

RESUMO

Neurons within a neuronal network can be grouped by bottom-up and top-down influences using synchrony in neuronal oscillations. This creates the representation of perceptual objects from sensory features. Oscillatory activity can be differentiated into stimulus-phase-locked (evoked) and non-phase-locked (induced). The former is mainly determined by sensory input, the latter by higher-level (cortical) processing. Effects of auditory deprivation on cortical oscillations have been studied in congenitally deaf cats (CDCs) using cochlear implant (CI) stimulation. CI-induced alpha, beta, and gamma activity were compromised in the auditory cortex of CDCs. Furthermore, top-down information flow between secondary and primary auditory areas in hearing cats, conveyed by induced alpha oscillations, was lost in CDCs. Here we used the matching pursuit algorithm to assess components of such oscillatory activity in local field potentials recorded in primary field A1. Additionally to the loss of induced alpha oscillations, we also found a loss of evoked theta activity in CDCs. The loss of theta and alpha activity in CDCs can be directly related to reduced high-frequency (gamma-band) activity due to cross-frequency coupling. Here we quantified such cross-frequency coupling in adult 1) hearing-experienced, acoustically stimulated cats (aHCs), 2) hearing-experienced cats following acute pharmacological deafening and subsequent CIs, thus in electrically stimulated cats (eHCs), and 3) electrically stimulated CDCs. We found significant cross-frequency coupling in all animal groups in > 70% of auditory-responsive sites. The predominant coupling in aHCs and eHCs was between theta/alpha phase and gamma power. In CDCs such coupling was lost and replaced by alpha oscillations coupling to delta/theta phase. Thus, alpha/theta oscillations synchronize high-frequency gamma activity only in hearing-experienced cats. The absence of induced alpha and theta oscillations contributes to the loss of induced gamma power in CDCs, thereby signifying impaired local network activity.


Assuntos
Estimulação Acústica , Córtex Auditivo , Surdez , Ritmo Gama , Animais , Gatos , Córtex Auditivo/fisiopatologia , Surdez/fisiopatologia , Surdez/congênito , Implantes Cocleares , Ritmo alfa , Potenciais Evocados Auditivos , Algoritmos , Vias Auditivas/fisiopatologia , Modelos Animais de Doenças , Ritmo Teta
3.
FASEB J ; 38(2): e23411, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38243766

RESUMO

Autism spectrum disorder is discussed in the context of altered neural oscillations and imbalanced cortical excitation-inhibition of cortical origin. We studied here whether developmental changes in peripheral auditory processing, while preserving basic hearing function, lead to altered cortical oscillations. Local field potentials (LFPs) were recorded from auditory, visual, and prefrontal cortices and the hippocampus of BdnfPax2 KO mice. These mice develop an autism-like behavioral phenotype through deletion of BDNF in Pax2+ interneuron precursors, affecting lower brainstem functions, but not frontal brain regions directly. Evoked LFP responses to behaviorally relevant auditory stimuli were weaker in the auditory cortex of BdnfPax2 KOs, connected to maturation deficits of high-spontaneous rate auditory nerve fibers. This was correlated with enhanced spontaneous and induced LFP power, excitation-inhibition imbalance, and dendritic spine immaturity, mirroring autistic phenotypes. Thus, impairments in peripheral high-spontaneous rate fibers alter spike synchrony and subsequently cortical processing relevant for normal communication and behavior.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Audição , Fenótipo
4.
Sci Rep ; 13(1): 15787, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737452

RESUMO

Environmental events often occur on a probabilistic basis but can sometimes be predicted based on specific cues and thus approached proactively. Incidental statistical learning enables the acquisition of knowledge about probabilistic cue-target contingencies. However, the neural mechanisms of statistical learning about contingencies (SLC), the required conditions for successful learning, and the role of implicit processes in the resultant proactive behavior are still debated. We examined changes in behavior and cortical activity during an SLC task in which subjects responded to visual targets. Unbeknown to them, there were three types of target cues associated with high-, low-, and zero target probabilities. About half of the subjects spontaneously gained explicit knowledge about the contingencies (contingency-aware group), and only they showed evidence of proactivity: shortened response times to predictable targets and enhanced event-related brain responses (cue-evoked P300 and contingent negative variation, CNV) to high probability cues. The behavioral and brain responses were strictly associated on a single-trial basis. Source reconstruction of the brain responses revealed activation of fronto-parietal brain regions associated with cognitive control, particularly the anterior cingulate cortex and precuneus. We also found neural correlates of SLC in the contingency-unaware group, but these were restricted to post-target latencies and visual association areas. Our results document a qualitative difference between explicit and implicit learning processes and suggest that in certain conditions, proactivity may require explicit knowledge about contingencies.


Assuntos
Encéfalo , Aprendizagem , Humanos , Sinais (Psicologia) , Conscientização , Eletroencefalografia
5.
Hear Res ; 433: 108763, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37104991

RESUMO

The extent to which aging of the central auditory pathway impairs auditory perception in the elderly independent of peripheral cochlear decline is debated. To cause auditory deficits in normal hearing elderly, central aging needs to degrade neural sound representations at some point along the auditory pathway. However, inaccessible to psychophysical methods, the level of the auditory pathway at which aging starts to effectively degrade neural sound representations remains poorly differentiated. Here we tested how potential age-related changes in the auditory brainstem affect the stability of spatiotemporal multiunit complex speech-like sound representations in the auditory midbrain of old normal hearing CBA/J mice. Although brainstem conduction speed slowed down in old mice, the change was limited to the sub-millisecond range and only minimally affected temporal processing in the midbrain (i.e. gaps-in-noise sensitivity). Importantly, besides the small delay, multiunit complex temporal sound representations in the auditory midbrain did not differ between young and old mice. This shows that although small age-related neural effects in simple sound parameters in the lower brainstem may be present in aging they do not effectively deteriorate complex neural population representations at the level of the auditory midbrain when peripheral hearing remains normal. This result challenges the widespread belief of 'pure' central auditory decline as an automatic consequence of aging, at least up to the inferior colliculus. However, the stability of midbrain processing in aging emphasizes the role of undetected 'hidden' peripheral damage and accumulating effects in higher cortical auditory-cognitive processing explaining perception deficits in 'normal hearing' elderly.


Assuntos
Longevidade , Mesencéfalo , Camundongos , Animais , Camundongos Endogâmicos CBA , Percepção Auditiva , Tronco Encefálico , Envelhecimento/psicologia , Potenciais Evocados Auditivos do Tronco Encefálico
6.
J Vis Exp ; (184)2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35815969

RESUMO

Visual evoked potentials (VEP) allow the characterization of visual function in preclinical mouse models. Various methods exist to measure VEPs in mice, from non-invasive EEG, subcutaneous single-electrodes, and ECoG to fully invasive intracortical multichannel visual cortex recordings. It can be useful to acquire a global, topographical EEG-level characterization of visual responses previous to local intracortical microelectrode measurements in acute experimental settings. For example, one use case is to assess global cross-modal changes in VEP topography in deafness models before studying its effects on a local intracortical level. Multichannel epicranial EEG is a robust method to acquire such an overview measure of cortical visual activity. Multichannel epicranial EEG provides comparable results through a standardized, consistent approach to, for example, identify cross-modal, pathological, or age-related changes in cortical visual function. The current study presents a method to obtain the topographical distribution of flash-evoked VEPs with a 32-channel thin-film EEG electrode array in anesthetized mice. Combined with analysis in the time and frequency domain, this approach allows fast characterization and screening of the topography and basic visual properties of mouse cortical visual function, which can be combined with various acute experimental settings.


Assuntos
Potenciais Evocados Visuais , Córtex Visual , Animais , Eletrodos , Eletroencefalografia/métodos , Camundongos , Exame Neurológico , Estimulação Luminosa/métodos , Córtex Visual/fisiologia
7.
Neurobiol Aging ; 110: 47-60, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34852306

RESUMO

Impaired temporal resolution of the central auditory system has long been suggested to contribute to speech understanding deficits in the elderly. However, it has been difficult to differentiate between direct age-related central deficits and indirect effects of confounding peripheral age-related hearing loss on temporal resolution. To differentiate this, we measured temporal acuity in the inferior colliculus (IC) of aged CBA/J and C57BL/6 mice, as a model of aging with and without concomitant hearing loss. We used two common measures of auditory temporal processing: gap detection as a measure of temporal fine structure and amplitude-modulated noise as a measure of envelope sensitivity. Importantly, auditory temporal acuity remained precise in the IC of old CBA/J mice when no or only minimal age-related hearing loss was present. In contrast, temporal acuity was only indirectly reduced by the presence of age-related hearing loss in aged C57BL/6 mice, not by affecting the brainstem precision, but by affecting the signal-to-noise ratio of the neuronal activity in the IC. This demonstrates that indirect effects of age-related peripheral hearing loss likely remain an important factor for temporal processing in aging in comparison to 'pure' central auditory decline itself. It also draws attention to the issue that the threshold difference between 'nearly normal' or 'clinically normal' hearing aging subjects in comparison to normal hearing young subjects still can have indirect effects on central auditory neural representations of temporal processing.


Assuntos
Envelhecimento/fisiologia , Percepção Auditiva/fisiologia , Colículos Inferiores/fisiologia , Presbiacusia/fisiopatologia , Percepção do Tempo/fisiologia , Animais , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Neurônios/fisiologia , Presbiacusia/etiologia , Razão Sinal-Ruído
8.
Front Neural Circuits ; 15: 785603, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069123

RESUMO

Neuronal hyperexcitability in the central auditory pathway linked to reduced inhibitory activity is associated with numerous forms of hearing loss, including noise damage, age-dependent hearing loss, and deafness, as well as tinnitus or auditory processing deficits in autism spectrum disorder (ASD). In most cases, the reduced central inhibitory activity and the accompanying hyperexcitability are interpreted as an active compensatory response to the absence of synaptic activity, linked to increased central neural gain control (increased output activity relative to reduced input). We here suggest that hyperexcitability also could be related to an immaturity or impairment of tonic inhibitory strength that typically develops in an activity-dependent process in the ascending auditory pathway with auditory experience. In these cases, high-SR auditory nerve fibers, which are critical for the shortest latencies and lowest sound thresholds, may have either not matured (possibly in congenital deafness or autism) or are dysfunctional (possibly after sudden, stressful auditory trauma or age-dependent hearing loss linked with cognitive decline). Fast auditory processing deficits can occur despite maintained basal hearing. In that case, tonic inhibitory strength is reduced in ascending auditory nuclei, and fast inhibitory parvalbumin positive interneuron (PV-IN) dendrites are diminished in auditory and frontal brain regions. This leads to deficits in central neural gain control linked to hippocampal LTP/LTD deficiencies, cognitive deficits, and unbalanced extra-hypothalamic stress control. Under these conditions, a diminished inhibitory strength may weaken local neuronal coupling to homeostatic vascular responses required for the metabolic support of auditory adjustment processes. We emphasize the need to distinguish these two states of excitatory/inhibitory imbalance in hearing disorders: (i) Under conditions of preserved fast auditory processing and sustained tonic inhibitory strength, an excitatory/inhibitory imbalance following auditory deprivation can maintain precise hearing through a memory linked, transient disinhibition that leads to enhanced spiking fidelity (central neural gain⇑) (ii) Under conditions of critically diminished fast auditory processing and reduced tonic inhibitory strength, hyperexcitability can be part of an increased synchronization over a broader frequency range, linked to reduced spiking reliability (central neural gain⇓). This latter stage mutually reinforces diminished metabolic support for auditory adjustment processes, increasing the risks for canonical dementia syndromes.


Assuntos
Transtorno do Espectro Autista , Perda Auditiva , Zumbido , Cognição , Humanos , Reprodutibilidade dos Testes
9.
J Neurosci Methods ; 325: 108316, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31251949

RESUMO

BACKGROUND: Measuring visual evoked potentials (VEP) by means of EEG allows the quasi non-invasive assessment of visual function in mice. Such sensory phenotyping is important to screen for genetic or aging effects on vision in preclinical mouse models. Thus, a standardized EEG-like approach for the assessment of sensory evoked potentials in mice is desirable. NEW METHOD: We describe a method to obtain the topographical distribution of flash evoked VEPs with 32-channel thin-film EEG electrode arrays in anesthetized mice. Further, we provide suggestions for the optimal choice of adequate digital filtering, referencing, and stimulus parameters for fast and reliable assessment of VEP parameters and distribution. RESULTS: 32-channel thin-film electrodes provided clear information on the VEP topography across the skull. Re-referencing, such as bipolar, common average, and local average montages could be used to further refine the information on VEP topography. A balanced choice of digital high-pass filter, signal averaging and stimulus rate allowed to minimize measurement duration and at the same time assured good VEP signal-to-noise ratio. COMPARISON WITH EXISTING METHODS: Subdermal electrodes or single skull screws provide only limited topographical information of the VEP. Assessment of VEPs with 32-channel thin-film electrodes can provide comparable signal quality with superior spatial resolution and standardized topographical and hemispheric information of VEP distribution. CONCLUSIONS: EEG-like thin-film electrodes are an efficient tool for fast, comprehensive sensory phenotyping with topographical information in mice. This is a step towards the use of standardized mouse EEG to characterize EEG biomarkers in mouse models of human diseases.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados Visuais/fisiologia , Animais , Biomarcadores , Eletrodos , Eletroencefalografia/instrumentação , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Neuroscience ; 375: 149-157, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29432882

RESUMO

Congenital deafness not only affects the development of the auditory cortex, but also the interrelation between the visual and auditory system. For example, congenital deafness leads to visual modulation of the deaf auditory cortex in the form of cross-modal plasticity. Here we asked, whether congenital deafness additionally affects auditory modulation in the visual cortex. We demonstrate that auditory activity, which is normally present in the lateral suprasylvian visual areas in normal hearing cats, can also be elicited by electrical activation of the auditory system with cochlear implants. We then show that in adult congenitally deaf cats auditory activity in this region was reduced when tested with cochlear implant stimulation. However, the change in this area was small and auditory activity was not completely abolished despite years of congenital deafness. The results document that congenital deafness leads not only to changes in the auditory cortex but also affects auditory modulation of visual areas. However, the results further show a persistence of fundamental cortical sensory functional organization despite congenital deafness.


Assuntos
Percepção Auditiva/fisiologia , Surdez/congênito , Surdez/fisiopatologia , Córtex Visual/fisiopatologia , Animais , Córtex Auditivo/fisiopatologia , Gatos , Implantes Cocleares , Surdez/reabilitação , Feminino , Masculino , Plasticidade Neuronal
11.
Hear Res ; 343: 50-63, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27637669

RESUMO

The theory of predictive coding assumes that higher-order representations influence lower-order representations by generating predictions about sensory input. In congenital deafness, one identified dysfunction is a reduced activation of deep layers in the auditory cortex. Since these layers play a central role for processing top-down influences, congenital deafness might interfere with the integration of top-down and bottom-up information flow. Studies in humans suggest more deficits in higher-order than in primary cortical areas in congenital deafness. That opens up the question how well neurons in higher-order areas can be activated by the input through the deprived auditory pathway after restoration of hearing with cochlear implants. Further it is unclear whether their interconnections to lower order areas are impaired by absence of hearing. Corticocortical anatomical fiber tracts and general auditory responsiveness in both primary and higher-order areas are generally preserved in absence of auditory experience. However, the existing data suggest a dichotomy between preservation of anatomical cortical connectivity in congenital deafness and functional deficits in corticocortical coupling. Further, cross-modal reorganization observed in congenital deafness in specific cortical areas appears to be established by functional synaptic changes and rests on anatomically preserved, genetically-predetermined and molecularly patterned circuitry connecting the sensory systems. Current data indicate a reduced corticocortical functional coupling between cortical auditory areas in congenital deafness, both in bottom-up and top-down information stream. Consequently, congenital deafness is likely to result in a deficit in predictive coding that affects learning ability after late cochlear implantation.


Assuntos
Córtex Auditivo/fisiopatologia , Percepção Auditiva , Sincronização Cortical , Surdez/fisiopatologia , Surdez/psicologia , Audição , Plasticidade Neuronal , Estimulação Acústica , Animais , Vias Auditivas/fisiopatologia , Surdez/congênito , Surdez/diagnóstico , Potenciais Evocados Auditivos , Humanos , Aprendizagem
12.
Hear Res ; 341: 109-118, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27562195

RESUMO

In mice, the auditory brainstem response (ABR) is frequently used to assess hearing status in transgenic hearing models. The diagnostic value of the ABR depends on knowledge about the anatomical sources of its characteristic waves. Here, we studied the contribution of the inferior colliculus (IC) to the click-evoked scalp ABR in mice. We demonstrate a non-invasive correlate of the IC response that can be measured in the scalp ABR as a slow positive wave P0 with peak latency 7-8 ms when recorded with adequate band-pass filtering. Wave P0 showed close correspondence in latency, magnitude and shape with the sustained part of evoked spiking activity and local field potentials (LFP) in the central nucleus of the IC. In addition, the onset peaks of the IC response were related temporally to ABR wave V and to some extent to wave IV. This relation was further supported by depth-dependent modulation of the shape of ABR wave IV and V within the IC suggesting generation within or in close vicinity to the IC. In conclusion, the slow ABR wave P0 in the scalp ABR may represent a complementary non-invasive marker for IC activity in the mouse. Further, the latency of synchronized click-evoked activity in the IC supports the view that IC contributes to ABR wave V, and possibly also to ABR wave IV.


Assuntos
Limiar Auditivo/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Potenciais Evocados Auditivos , Testes Auditivos , Colículos Inferiores/fisiologia , Estimulação Acústica , Animais , Tronco Encefálico/fisiologia , Feminino , Audição , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Fenótipo , Tempo de Reação/fisiologia , Processamento de Sinais Assistido por Computador , Fatores de Tempo
13.
J Neurosci ; 36(23): 6175-85, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277796

RESUMO

UNLABELLED: Congenital sensory deprivation can lead to reorganization of the deprived cortical regions by another sensory system. Such cross-modal reorganization may either compete with or complement the "original" inputs to the deprived area after sensory restoration and can thus be either adverse or beneficial for sensory restoration. In congenital deafness, a previous inactivation study documented that supranormal visual behavior was mediated by higher-order auditory fields in congenitally deaf cats (CDCs). However, both the auditory responsiveness of "deaf" higher-order fields and interactions between the reorganized and the original sensory input remain unknown. Here, we studied a higher-order auditory field responsible for the supranormal visual function in CDCs, the auditory dorsal zone (DZ). Hearing cats and visual cortical areas served as a control. Using mapping with microelectrode arrays, we demonstrate spatially scattered visual (cross-modal) responsiveness in the DZ, but show that this did not interfere substantially with robust auditory responsiveness elicited through cochlear implants. Visually responsive and auditory-responsive neurons in the deaf auditory cortex formed two distinct populations that did not show bimodal interactions. Therefore, cross-modal plasticity in the deaf higher-order auditory cortex had limited effects on auditory inputs. The moderate number of scattered cross-modally responsive neurons could be the consequence of exuberant connections formed during development that were not pruned postnatally in deaf cats. Although juvenile brain circuits are modified extensively by experience, the main driving input to the cross-modally (visually) reorganized higher-order auditory cortex remained auditory in congenital deafness. SIGNIFICANCE STATEMENT: In a common view, the "unused" auditory cortex of deaf individuals is reorganized to a compensatory sensory function during development. According to this view, cross-modal plasticity takes over the unused cortex and reassigns it to the remaining senses. Therefore, cross-modal plasticity might conflict with restoration of auditory function with cochlear implants. It is unclear whether the cross-modally reorganized auditory areas lose auditory responsiveness. We show that the presence of cross-modal plasticity in a higher-order auditory area does not reduce auditory responsiveness of that area. Visual reorganization was moderate, spatially scattered and there were no interactions between cross-modally reorganized visual and auditory inputs. These results indicate that cross-modal reorganization is less detrimental for neurosensory restoration than previously thought.


Assuntos
Córtex Auditivo/patologia , Implante Coclear , Surdez/fisiopatologia , Surdez/terapia , Neurônios/fisiologia , Estimulação Acústica , Análise de Variância , Animais , Córtex Auditivo/fisiopatologia , Mapeamento Encefálico , Gatos , Implantes Cocleares , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Masculino , Modelos Biológicos , Estimulação Luminosa
14.
PLoS One ; 7(11): e49855, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185462

RESUMO

General anesthesia is not a uniform state of the brain. Ongoing activity differs between light and deep anesthesia and cortical response properties are modulated in dependence of anesthetic dosage. We investigated how anesthesia level affects cross-modal interactions in primary sensory cortex. To examine this, we continuously measured the effects of visual and auditory stimulation during increasing and decreasing isoflurane level in the mouse visual cortex and the subiculum (from baseline at 0.7 to 2.5 vol % and reverse). Auditory evoked burst activity occurred in visual cortex after a transition during increase of anesthesia level. At the same time, auditory and visual evoked bursts occurred in the subiculum, even though the subiculum was unresponsive to both stimuli previous to the transition. This altered sensory excitability was linked to the presence of burst suppression activity in cortex, and to a regular slow burst suppression rhythm (~0.2 Hz) in the subiculum. The effect disappeared during return to light anesthesia. The results show that pseudo-heteromodal sensory burst responses can appear in brain structures as an effect of an anesthesia induced state change.


Assuntos
Anestesia Geral , Isoflurano/administração & dosagem , Córtex Visual , Estimulação Acústica , Animais , Eletroencefalografia , Potenciais Evocados Auditivos/efeitos dos fármacos , Camundongos , Estimulação Luminosa , Explosão Respiratória/efeitos dos fármacos , Córtex Visual/efeitos dos fármacos , Córtex Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...