Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(12): 5351-5364, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38481142

RESUMO

The reaction of Fe2(mes)4 with the super-bulky amidines and guanidines HLAr*-R (LAr*-R = [(Ar*N)2C(R)]-, Ar* = 2,6-bis(diphenylmethyl)-4-tert-butylphenyl), R = Me (LAr*-Me), tBu (LAr*-tBu), Ph (LAr*-Ph), NiPr2 (LAr*-iPr2N), and Pip (LAr*-Pip)) gives access to the three-coordinate iron-mesityl complexes (LAr*-R)Fe(mes) only where LAr*-R = LAr*-Me, LAr*-Ph, or LAr*-Pip. Subsequent protonolysis with the N-atom transfer reagent Hdbabh (Hdbabh = 2,3:5,6-dibenzo-7-azabicyclo[2.2.1]hepta-2,5-diene) is limited in success, providing in one instance a few crystals of four-coordinate (LAr*-Me)Fe(dbabh)(Hdbabh), while three-coordinate (LAr*-Pip)Fe(dbabh) is synthesized reproducibly. Complexes (LAr*-Me)Fe(dbabh)(Hdbabh) and (LAr*-Pip)Fe(dbabh) are thermally insensitive in solution to temperatures of up to 100 °C. On the other hand, both (LAr*-Me)Fe(dbabh)(Hdbabh) and (LAr*-Pip)Fe(dbabh) show sensitivity to blue LED light (395 nm), undergoing photochemical transformations. For instance, the photolysis of (LAr*-Me)Fe(dbabh)(Hdbabh) leads to N-C bond scission and C-C bond coupling across the -dbabh moieties to give four-coordinate (LAr*-Me)Fe(N=dbabh-dbabhNH2). Photolyzing pyridine-d5 (py-d5) solutions of (LAr*-Pip)Fe(dbabh) at -5 °C produces a new paramagnetic photoproduct, [P]. Due to the thermal sensitivity of compound [P], it has eluded structural characterization; yet, Evans' method measurements suggest that the iron(II) oxidation state is maintained, thereby pointing to the -dbabh moiety as the locus of chemical change. In line with this assessment, addition of excess Me3SiCl to solutions of [P] produces the iron(II) complex (LAr*-Pip)FeCl(py-d5) as shown by 1H NMR spectroscopy. Gas chromatography/mass spectrometry analysis of the solutions of [P] shows a peak in the chromatogram with a molecular mass corresponding to a formulation of C14H11N that cannot be attributed to Hdbabh. This provides evidence for the photochemical-induced isomerization of the -dbabh ligand, revealing a heretofore unknown photochemical sensitivity of this N atom transfer reagent.

2.
Am J Clin Exp Urol ; 11(6): 481-499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148934

RESUMO

BACKGROUND: Cancer detection presents challenges regarding invasiveness, cost, and reliability. As a result, exploring alternative diagnostic methods holds significant clinical importance. Urinary metabolomic profiling has emerged as a promising avenue; however, its application for cancer diagnosis may be influenced by sample preparation or storage conditions. OBJECTIVE: This study aimed to assess the impact of sample storage and processing conditions on urinary volatile organic compounds (VOCs) profiles and establish a robust standard operating procedure (SOP) for such diagnostic applications. METHODS: Five key variables were investigated: storage temperatures, durations, freeze-thaw cycles, sample collection conditions, and sample amounts. The analysis of VOCs involved stir bar sorptive extraction coupled with thermal desorption-gas chromatography/mass spectrometry (SBSE-TD-GC-MS), with compound identification facilitated by the National Institute of Standards and Technology Library (NIST). Extensive statistical analysis, including combined scatterplot and response surface (CSRS) plots, partial least squares-discriminant analysis (PLS-DA), and probability density function plots (PDFs), were employed to study the effects of the factors. RESULTS: Our findings revealed that urine storage duration, sample amount, temperature, and fasting/non-fasting sample collection did not significantly impact urinary metabolite profiles. This suggests flexibility in urine sample collection conditions, enabling individuals to contribute samples under varying circumstances. However, the influence of freeze-thaw cycles was evident, as VOC profiles exhibited distinct clustering patterns based on the number of cycles. This emphasizes the effect of freeze-thaw cycles on the integrity of urinary profiles. CONCLUSIONS: The developed SOP integrating SBSE-TD-GC-MS and statistical analyses can serve as a valuable tool for analyzing urinary organic compounds with minimal preparation and sensitive detection. The findings also support that urinary VOCs for cancer screening and diagnosis could be a feasible alternative offering a robust, non-invasive, and sensitive approach for cancer screening.

3.
Chemosphere ; 338: 139439, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37429381

RESUMO

Fluorotelomer alcohols (FTOHs) are one of the major classes of per- and polyfluoroalkyl substances (PFAS). Due to their potential toxicity, persistence, and ubiquitous presence in the environment, some common PFAS are voluntarily phased out; while FTOHs are used as alternatives to conventional PFAS. FTOHs are precursors of perfluorocarboxylic acids (PFCAs) and therefore they are commonly detected in water matrices, which eventually indicate PFAS contamination in drinking water supplies and thus a potential source of human exposure. Even though studies have been conducted nationwide to evaluate the degree of FTOHs in the water environment, robust monitoring is lacking because of the unavailability of simple and sustainable analytical extraction and detection methods. To fill the gap, we developed and validated a simple, rapid, minimal solvent use, no clean-up, and sensitive method for the determination of FTOHs in water by stir bar sorptive extraction (SBSE) coupled with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Three commonly detected FTOHs (6:2 FTOH, 8:2 FTOH, and 10:2 FTOH) were selected as the model compounds. Factors such as extraction time, stirring speed, solvent composition, salt addition, and pH were investigated to achieve optimal extraction efficiency. This "green chemistry" based extraction provided good sensitivity and precision with low method limits of detection ranging from 2.16 ng/L to 16.7 ng/L and with an extraction recovery ranging 55%-111%. The developed method were tested on tap water, brackish water, and wastewater influent and effluent. 6:2 FTOH and 8:2 FTOH were detected in two wastewater samples at 78.0 and 34.8 ng/L, respectively. This optimized SBSE-TD-GC-MS method will be a valuable alternative to investigate FTOHs in water matrices.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Humanos , Águas Residuárias , Fluorocarbonos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Solventes/análise , Poluentes Químicos da Água/análise , Reprodutibilidade dos Testes
4.
Sci Total Environ ; 844: 157160, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35798116

RESUMO

The objective of the current study is to evaluate both the positive and negative effects of manganese-doped graphene quantum dots (GQD-Mn) on Capsicum annuum L. grown under salt stress. GQD-Mn was synthesized, characterized, and foliar-applied (250 mg/L, 120 mg/L, 60 mg/L) to C. annuum L. before and after the flowering stage, during which 100 mM of NaCl solution was introduced into the soil as salt stress. Controls were designed as absolute control (no nanomaterials or salt) and negative control (no nanomaterials only salt). Herein, we report that GQD-Mn offset the reduction of fruit production in salt-stressed C. annuum L. by around 40 %. However, based on a comprehensive analysis of normal alkanes (n-alkane) using gas chromatography-mass spectrometry (GC-MS), we also observed that the leaf epicuticular wax profile was disturbed by GQD-Mn, as the concentration of long-chain n-alkanes was increased. Meanwhile, the content of magnesium (Mg) and zinc (Zn) indicated a potential promoted photosynthesis activity in C. annuum L leaves. We hypothesize that the optical properties of GQD-Mn allow leaves to utilize light more efficiently, thus improving photosynthetic activities in plants to acclimate salt stress. But the increased light usage also induced heat stress on the leaf surfaces, which caused n-alkanes changes. Our results provided a unique perspective on nano-plant interaction that value both beneficial and toxic effects of nanomaterials, especially when evaluating the safety of nano-enabled agriculture in areas facing harsh environmental conditions such as salinity.


Assuntos
Capsicum , Grafite , Pontos Quânticos , Alcanos , Capsicum/química , Íons , Manganês/toxicidade , Folhas de Planta , Pontos Quânticos/toxicidade , Estresse Salino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...