Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(13): 2436-2454.e10, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38925114

RESUMO

Signal transduction proteins containing a pLxIS motif induce interferon (IFN) responses central to antiviral immunity. Apart from their established roles in activating the IFN regulator factor (IRF) transcription factors, the existence of additional pathways and functions associated with the pLxIS motif is unknown. Using a synthetic biology-based platform, we identified two orphan pLxIS-containing proteins that stimulate IFN responses independent of all known pattern-recognition receptor pathways. We further uncovered a diversity of pLxIS signaling mechanisms, where the pLxIS motif represents one component of a multi-motif signaling entity, which has variable functions in activating IRF3, the TRAF6 ubiquitin ligase, IκB kinases, mitogen-activated protein kinases, and metabolic activities. The most diverse pLxIS signaling mechanisms were associated with the highest antiviral activities in human cells. The flexibility of domains that regulate IFN signaling may explain their prevalence in nature.


Assuntos
Fator Regulador 3 de Interferon , Interferons , Transdução de Sinais , Fator 6 Associado a Receptor de TNF , Humanos , Interferons/metabolismo , Células HEK293 , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Quinase I-kappa B/metabolismo , Quinase I-kappa B/genética , Domínios Proteicos , Animais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Motivos de Aminoácidos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(51): e2312057120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38085776

RESUMO

Neoepitopes arising from amino acid substitutions due to single nucleotide polymorphisms are targets of T cell immune responses to cancer and are of significant interest in the development of cancer vaccines. However, understanding the characteristics of rare protective neoepitopes that truly control tumor growth has been a challenge, due to their scarcity as well as the challenge of verifying true, neoepitope-dependent tumor control in humans. Taking advantage of recent work in mouse models that circumvented these challenges, here, we compared the structural and physical properties of neoepitopes that range from fully protective to immunologically inactive. As neoepitopes are derived from self-peptides that can induce immune tolerance, we studied not only how the various neoepitopes differ from each other but also from their wild-type counterparts. We identified multiple features associated with protection, including features that describe how neoepitopes differ from self as well as features associated with recognition by diverse T cell receptor repertoires. We demonstrate both the promise and limitations of neoepitope structural analysis and predictive modeling and illustrate important aspects that can be incorporated into neoepitope prediction pipelines.


Assuntos
Neoplasias , Humanos , Animais , Camundongos , Epitopos , Neoplasias/genética , Linfócitos T , Peptídeos/metabolismo , Antígenos de Neoplasias
3.
Curr Opin Immunol ; 83: 102349, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37269786

RESUMO

Within immune cells, microbial and self-ligands trigger pattern recognition receptors (PRRs) to nucleate and activate the signaling organelles of the immune system. Much work in this area has derived from observational biology of natural innate immune signaling. More recently, synthetic biology approaches have been used to rewire and study innate immune networks. By utilizing controllable chemical or optogenetic inputs, rearranging protein building blocks, or engineering signal recording circuits, synthetic biology-based techniques complement and inform studies of natural immune pathway operation. In this review, we describe recent synthetic biology-based approaches that have uncovered new insights into PRR signaling, virus-host interactions, and systemic cytokine responses.


Assuntos
Imunidade Inata , Receptores de Reconhecimento de Padrão , Humanos , Receptores de Reconhecimento de Padrão/metabolismo , Citocinas , Transdução de Sinais , Biologia
4.
Nat Commun ; 13(1): 7189, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36424374

RESUMO

MHC restriction, which describes the binding of TCRs from CD4+ T cells to class II MHC proteins and TCRs from CD8+ T cells to class I MHC proteins, is a hallmark of immunology. Seemingly rare TCRs that break this paradigm exist, but mechanistic insight into their behavior is lacking. TIL1383I is a prototypical class-mismatched TCR, cloned from a CD4+ T cell but recognizing the tyrosinase tumor antigen presented by the class I MHC HLA-A2 in a fully functional manner. Here we find that TIL1383I binds this class I target with a highly atypical geometry. Despite unorthodox binding, TCR signaling, antigen specificity, and the ability to use CD8 are maintained. Structurally, a key feature of TIL1383I is an exceptionally long CDR3ß loop that mediates functions that are traditionally performed separately by hypervariable and germline loops in canonical TCR structures. Our findings thus expand the range of known TCR binding geometries compatible with normal function and specificity, provide insight into the determinants of MHC restriction, and may help guide TCR selection and engineering for immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Receptores de Antígenos de Linfócitos T , Membrana Celular , Engenharia , Antígeno HLA-A2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...