Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 69(9): 2935-2946, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35271437

RESUMO

OBJECTIVE: Microwave imaging has been investigated for medical applications such as stroke and breast imaging. Current systems typically rely on bench-top equipment to scan at a variety of antenna positions. For dynamic imaging of moving structures, such as the cardiovascular system, much higher imaging speeds are required than what has thus far been reported. Recent innovations in radar-on-chip technology allow for simultaneous high speed data collection at multiple antenna positions at a fraction of the cost of conventional microwave equipment, in a small and potentially portable system. The objective of the current work is to provide proof of concept of dynamic microwave imaging in the body, using radar-on-chip technology. METHODS: Arrays of body-coupled antennas were used with nine simultaneously operated coherent ultra-wideband radar chips. Data were collected from the chest and thigh of a volunteer, with the objective of imaging the femoral artery and beating heart. In addition, data were collected from a phantom to validate system performance. Video data were constructed using beamforming. RESULTS: The location of the femoral artery could successfully be resolved, and a distinct arterial pulse wave was discernable. Cardiac activity was imaged at locations corresponding to the heart, but image quality was insufficient to identify individual anatomical structures. Static and differential imaging of the femur bone proved unsuccessful. CONCLUSION: Using radar chip technology and an imaging approach, cardiovascular activity was detected in the body, demonstrating first steps towards biomedical dynamic microwave imaging. The current portable and modular system design was found unsuitable for static in-body imaging. SIGNIFICANCE: This first proof of concept demonstrates that radar-on-chip could enable cardiovascular imaging in a low-cost, small and portable system. Such a system could make medical imaging more accessible, particularly in ambulatory or long-term monitoring settings.


Assuntos
Imageamento de Micro-Ondas , Radar , Diagnóstico por Imagem/métodos , Coração , Humanos , Micro-Ondas
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6578-6582, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947349

RESUMO

Heart rate variability (HRV), as measured by ultra-wideband (UWB) radar, enables contactless monitoring of physiological functioning in the human body. In the current study, we verified the reliability of HRV extraction from radar data, under limited transmitter power. In addition, we conducted a feasibility study of mental state classification from HRV data, measured using radar. Specifically, arctangent demodulation with calibration and low rank approximation have been used for radar signal pre-processing. An adaptive continuous wavelet filter and moving average filter were utilized for HRV extraction. For the mental state classification task, performance of support vector machine, k-nearest neighbors and random forest classifiers have been compared. The developed system has been validated on human participants, with 10 participants for HRV extraction, and three participants for the proof-of-concept mental state classification study. The results of HRV extraction demonstrate the reliability of time-domain parameter extraction from radar data. However, frequency-domain HRV parameters proved to be unreliable under low SNR. The best average overall mental state classification accuracy achieved was 82.34%, which has important implications for the feasibility of mental health monitoring using UWB radar.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Frequência Cardíaca , Humanos , Monitorização Fisiológica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...