Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 109(14): 2275-2291.e8, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34133945

RESUMO

C9orf72 repeat expansions cause inherited amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD) and result in both loss of C9orf72 protein expression and production of potentially toxic RNA and dipeptide repeat proteins. In addition to ALS/FTD, C9orf72 repeat expansions have been reported in a broad array of neurodegenerative syndromes, including Alzheimer's disease. Here we show that C9orf72 deficiency promotes a change in the homeostatic signature in microglia and a transition to an inflammatory state characterized by an enhanced type I IFN signature. Furthermore, C9orf72-depleted microglia trigger age-dependent neuronal defects, in particular enhanced cortical synaptic pruning, leading to altered learning and memory behaviors in mice. Interestingly, C9orf72-deficient microglia promote enhanced synapse loss and neuronal deficits in a mouse model of amyloid accumulation while paradoxically improving plaque clearance. These findings suggest that altered microglial function due to decreased C9orf72 expression directly contributes to neurodegeneration in repeat expansion carriers independent of gain-of-function toxicities.


Assuntos
Envelhecimento/metabolismo , Amiloide/metabolismo , Proteína C9orf72/metabolismo , Microglia/metabolismo , Sinapses/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Amiloide/genética , Animais , Proteína C9orf72/genética , Expansão das Repetições de DNA , Modelos Animais de Doenças , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Sinapses/patologia
3.
Nature ; 585(7823): 96-101, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32814898

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders that overlap in their clinical presentation, pathology and genetic origin. Autoimmune disorders are also overrepresented in both ALS and FTD, but this remains an unexplained epidemiologic observation1-3. Expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial ALS and FTD (C9-ALS/FTD), and lead to both repeat-containing RNA and dipeptide accumulation, coupled with decreased C9orf72 protein expression in brain and peripheral blood cells4-6. Here we show in mice that loss of C9orf72 from myeloid cells alone is sufficient to recapitulate the age-dependent lymphoid hypertrophy and autoinflammation seen in animals with a complete knockout of C9orf72. Dendritic cells isolated from C9orf72-/- mice show marked early activation of the type I interferon response, and C9orf72-/- myeloid cells are selectively hyperresponsive to activators of the stimulator of interferon genes (STING) protein-a key regulator of the innate immune response to cytosolic DNA. Degradation of STING through the autolysosomal pathway is diminished in C9orf72-/- myeloid cells, and blocking STING suppresses hyperactive type I interferon responses in C9orf72-/- immune cells as well as splenomegaly and inflammation in C9orf72-/- mice. Moreover, mice lacking one or both copies of C9orf72 are more susceptible to experimental autoimmune encephalitis, mirroring the susceptibility to autoimmune diseases seen in people with C9-ALS/FTD. Finally, blood-derived macrophages, whole blood and brain tissue from patients with C9-ALS/FTD all show an elevated type I interferon signature compared with samples from people with sporadic ALS/FTD; this increased interferon response can be suppressed with a STING inhibitor. Collectively, our results suggest that patients with C9-ALS/FTD have an altered immunophenotype because their reduced levels of C9orf72 cannot suppress the inflammation mediated by the induction of type I interferons by STING.


Assuntos
Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Inflamação/metabolismo , Inflamação/prevenção & controle , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Envelhecimento/imunologia , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/deficiência , Células Dendríticas/citologia , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Inflamação/genética , Inflamação/imunologia , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Células Mieloides/imunologia , Neoplasias/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
4.
J Clin Invest ; 129(4): 1756-1771, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30882371

RESUMO

Mitofusin-2 (MFN2) is a mitochondrial outer-membrane protein that plays a pivotal role in mitochondrial dynamics in most tissues, yet mutations in MFN2, which cause Charcot-Marie-Tooth disease type 2A (CMT2A), primarily affect the nervous system. We generated a transgenic mouse model of CMT2A that developed severe early onset vision loss and neurological deficits, axonal degeneration without cell body loss, and cytoplasmic and axonal accumulations of fragmented mitochondria. While mitochondrial aggregates were labeled for mitophagy, mutant MFN2 did not inhibit Parkin-mediated degradation, but instead had a dominant negative effect on mitochondrial fusion only when MFN1 was at low levels, as occurs in neurons. Finally, using a transgenic approach, we found that augmenting the level of MFN1 in the nervous system in vivo rescued all phenotypes in mutant MFN2R94Q-expressing mice. These data demonstrate that the MFN1/MFN2 ratio is a key determinant of tissue specificity in CMT2A and indicate that augmentation of MFN1 in the nervous system is a viable therapeutic strategy for the disease.


Assuntos
Axônios/metabolismo , Doença de Charcot-Marie-Tooth/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Animais , Axônios/patologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/prevenção & controle , Modelos Animais de Doenças , GTP Fosfo-Hidrolases/genética , Camundongos , Camundongos Transgênicos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Ann Clin Transl Neurol ; 5(2): 186-200, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29468179

RESUMO

Objective: To investigate transplantation of rat Schwann cells or human iPSC-derived neural crest cells and derivatives into models of acquired and inherited peripheral myelin damage. Methods: Primary cultured rat Schwann cells labeled with a fluorescent protein for monitoring at various times after transplantation. Human-induced pluripotent stem cells (iPSCs) were differentiated into neural crest stem cells, and subsequently toward a Schwann cell lineage via two different protocols. Cell types were characterized using flow cytometry, immunocytochemistry, and transcriptomics. Rat Schwann cells and human iPSC derivatives were transplanted into (1) nude rats pretreated with lysolecithin to induce demyelination or (2) a transgenic rat model of dysmyelination due to PMP22 overexpression. Results: Rat Schwann cells transplanted into sciatic nerves with either toxic demyelination or genetic dysmyelination engrafted successfully, and migrated longitudinally for relatively long distances, with more limited axial migration. Transplanted Schwann cells engaged existing axons and displaced dysfunctional Schwann cells to form normal-appearing myelin. Human iPSC-derived neural crest stem cells and their derivatives shared similar engraftment and migration characteristics to rat Schwann cells after transplantation, but did not further differentiate into Schwann cells or form myelin. Interpretation: These results indicate that cultured Schwann cells surgically delivered to peripheral nerve can engraft and form myelin in either acquired or inherited myelin injury, as proof of concept for pursuing cell therapy for diseases of peripheral nerve. However, lack of reliable technology for generating human iPSC-derived Schwann cells for transplantation therapy remains a barrier in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...