Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 10(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916141

RESUMO

After discovering an innovative technology for the reshaping of gluten proteins-the "Gluten FriendlyTM" system-that confers to wheat flour some unprecedented characteristics, such as reduced epitope antigenicity and a positive modulation of the gut microbiota, its effects on the production and quality of bread have been studied. Mainly, we have investigated the chemical, rheological and pasting properties of Gluten Friendly Flour (GFF) and of control flour (CF) with the aim of analyzing and interpreting potential differences. Furthermore, the bread made from GFF and CF was evaluated in terms of microstructure properties and sensory quality. The experiments demonstrated that GFF became soluble in aqueous solution, making it unfeasible to isolate using the Glutomatic apparatus. Although the water absorption of GFF increased by 10% compared to CF, dough elasticity was reduced, and dough stability decreased from 5 to 2 min. A significant increase in the alveograph index (P/L) from 0.63 to 6.31 was detected, whereas pasting properties did not change from the control flour. Despite these profound modifications in the rheological properties, GFF exhibited a high ability to shape dough and to produce bread with high quality and negligible differences from the control bread in terms of appearance, taste, aroma, color and texture.

2.
Front Microbiol ; 8: 1722, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28936206

RESUMO

Recently, an innovative gluten detoxification method called Gluten FriendlyTM (GF) has been developed. It induces structural modifications, which abolish the antigenic capacity of gluten and reduce the in vitro immunogenicity of the most common epitopes involved in celiac disease, without compromising the nutritional and technological properties. This study investigated the in vitro effects of GF bread (GFB) on the fecal microbiota from healthy and celiac individuals by a three-stage continuous fermentative system, which simulates the colon (vessel 1, proximal colon; vessel 2, transverse colon; and vessel 3, distal colon), as well as on the production of short chain fatty acids (SCFA, acetate, propionate, butyrate). The system was fed with GFB and the changes in microbiota through fluorescence in situ hybridization and in SCFA content were assessed. GFB exerted beneficial modulations such as bifidogenic effects in each compartment of the model both with healthy- and celiac-derived samples, as well as growth in Clostridium clusters XIVa+b in celiac-derived samples. Furthermore, increased levels of acetic acid were found in vessel 1 inoculated with the fecal microbiota of healthy individuals, as well as acetic and propionic in vessel 1 and 2 with celiac-derived samples. In addition, the use of multivariate approaches showed that the supplementation of GFB could result in a different modulation of the fecal microbiota and SCFA, as a function of initial equilibrium.

3.
PLoS One ; 11(9): e0162770, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27632361

RESUMO

The main aim of this paper was to assess the in vitro response of healthy and coeliac human faecal microbiota to gluten-friendly bread (GFB). Thus, GFB and control bread (CB) were fermented with faecal microbiota in pH-controlled batch cultures. The effects on the major groups of microbiota were monitored over 48 h incubations by fluorescence in situ hybridisation. Short-chain fatty acids (SCFAs) were measured by high-performance liquid chromatography (HPLC). Furthermore, the death kinetics of Lactobacillus acidophilus, Bifidobacterium animalis subsp. lactis, Staphylococcus aureus, and Salmonella Typhimurium in a saline solution supplemented with GFB or CB were also assessed. The experiments in saline solution pinpointed that GFB prolonged the survival of L. acidophilus and exerted an antibacterial effect towards S. aureus and S. Typhimurium. Moreover, GFB modulated the intestinal microbiota in vitro, promoting changes in lactobacilli and bifidobacteria members in coeliac subjects. A final multivariate approach combining both viable counts and metabolites suggested that GFB could beneficially modulate the coeliac gut microbiome; however, human studies are needed to prove its efficacy.


Assuntos
Pão , Doença Celíaca/metabolismo , Glutens/metabolismo , Microbiota , Estudos de Casos e Controles , Doença Celíaca/microbiologia , Fermentação , Humanos , Técnicas In Vitro
4.
Food Chem ; 197(Pt A): 634-40, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26616997

RESUMO

Wheat kernels were subjected to microwave treatment, and the proteins were characterized by size exclusion high-performance liquid chromatography (SE-HPLC) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Using this process, the proteins polymerize, forming intermolecular bonds among the same classes of proteins. Furthermore, the polymerization occurs only through disulphide bonds. Although SDS-PAGE did not show any differences for either the number or intensity of protein bands between flour samples before and after microwave treatment, gliadins from treated flours showed significantly reduced cross-reactivity with the R5 antibody. Moreover, the gluten became soluble in an aqueous saline solution, and it was not possible to isolate it using the Glutomatic apparatus. However, the treated flour, in the presence of water, was able to form dough and leaven and produce bread.


Assuntos
Proteínas de Plantas/química , Triticum/química , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Farinha/análise , Manipulação de Alimentos , Gliadina/química , Glutens/química , Micro-Ondas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...