Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 46(13): 7199-206, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22606993

RESUMO

Gas-phase perfluoroalkyl carboxylic acids (PFCAs) sorb strongly on filter material (i.e., GFF, QFF) used in conventional high volume air samplers, which results in an overestimation of the particle-phase concentration. In this study, we investigated an improved technique for measuring the gas-particle partitioning of per- and polyfluoroalkyl substances (PFASs) using an annular diffusion denuder sampler. Samples were analyzed for 7 PFAS classes [i.e., PFCAs, perfluoroalkane sulfonic acids (PFSAs), fluorotelomer alcohols (FTOHs), fluorotelomer methacrylates (FTMACs), fluorotelomer acrylates (FTACs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs)]. The measured particulate associated fraction (Φ') using the diffusion denuder sampler generally followed the trend FTACs (0%) < FTOHs (~8%) < FOSAs (~21%) < PFSAs (~29%) < FOSEs (~66%), whereas the Φ' of the C(8)-C(18) PFCAs increased with carbon chain length, and ranged from 6% to 100%. The ionizability of some PFASs, when associated with particles, is an important consideration when calculating the gas-particle partitioning coefficient as both ionic and neutral forms can be present in the particles. Here we differentiate between a gas-particle partitioning coefficient for neutral species, K(p), and one that accounts for both ionic and neutral species of a compound, K(p)'. The measured K(p)' for PFSAs and PFCAs was 4-5 log units higher compared to the interpolated K(p) for the neutral form only. The measured K(p)' can be corrected (to apply to the neutral form only) with knowledge of the pK(a) of the chemical and the pH of the condensed medium ("wet" particle or aqueous aerosol). The denuder-based sampling of PFASs has yielded a robust data set that demonstrates the importance of atmospheric pH and chemical pK(a) values in determining gas-particle partitioning of PFASs.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Atmosfera/análise , Monitoramento Ambiental/instrumentação , Hidrocarbonetos Fluorados/isolamento & purificação , Material Particulado/isolamento & purificação , Acrilatos/isolamento & purificação , Difusão , Desenho de Equipamento , Polímeros de Fluorcarboneto , Fluorocarbonos/isolamento & purificação , Umidade , Pressão , Temperatura
2.
Anal Chem ; 83(24): 9622-8, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22066738

RESUMO

Overestimation of the particle phase concentration collected on glass-fiber filters (GFFs) has been reported for perfluoroalkyl carboxylic acids (PFCAs) using conventional high volume air samplers. In this study, per- and polyfluoroalkyl substances (PFASs) were determined in the gas and particulate phases using colocated annular diffusion denuder and high volume air samplers at a semiurban site in Toronto, Canada, in winter 2010. Samples were analyzed for 7 PFAS classes (i.e., PFCAs, perfluoro-alkane sulfonic acids (PFSAs), fluorotelomer alcohols (FTOHs), fluorotelomer methacrylates (FTMACs), fluorotelomer acrylates (FTACs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs)). The gas diffusion coefficients for individual PFASs were calculated and the denuder performance was evaluated. Modeled subcooled liquid vapor pressures (p(L)) correlated well with the vapor phase breakthrough for the denuder and high volume air systems. Total air concentrations for PFASs measured using annular diffusion denuders and high volume samplers were in agreement within a factor of 4; however, much greater differences were observed for measurements of gas-particle partitioning. Vapor phase PFSAs and PFCAs can adsorb to the GFF using high volume air samplers, resulting in much higher particle-associated fractions for these chemicals compared to the annular diffusion denuder sampler. This effect was not observed for the FTOHs, FTMACs, FTACs, FOSAs, and FOSEs. Thus, for investigations of gas-particle partitioning of PFSAs and PFCAs, the diffusion denuder sampler is the preferred method. The results of this study improve our understanding of the gas-particle partitioning of PFASs, which is important for modeling their long-range transport in air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...