Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 170: 103859, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38114017

RESUMO

Unidirectional mating-type switching is a form of homothallic reproduction known only in a small number of filamentous ascomycetes. Their ascospores can give rise to either self-sterile isolates that require compatible partners for subsequent sexual reproduction, or self-fertile individuals capable of completing this process in isolation. The limited studies previously conducted in these fungi suggest that the differences in mating specificity are determined by the architecture of the MAT1 locus. In self-fertile isolates that have not undergone unidirectional mating-type switching, the locus contains both MAT1-1 and MAT1-2 mating-type genes, typical of primary homothallism. In the self-sterile isolates produced after a switching event, the MAT1-2 genes are lacking from the locus, likely due to a recombination-mediated deletion of the MAT1-2 gene information. To determine whether these arrangements of the MAT1 locus support unidirectional mating-type switching in the Ceratocystidaceae, the largest known fungal assemblage capable of this reproduction strategy, a combination of genetic and genomic approaches were used. The MAT1 locus was annotated in representative species of Ceratocystis, Endoconidiophora, and Davidsoniella. In all cases, MAT1-2 genes interrupted the MAT1-1-1 gene in self-fertile isolates. The MAT1-2 genes were flanked by two copies of a direct repeat that accurately predicted the boundaries of the deletion event that would yield the MAT1 locus of self-sterile isolates. Although the relative position of the MAT1-2 gene region differed among species, it always disrupted the MAT1-1-1 gene and/or its expression in the self-fertile MAT1 locus. Following switching, this gene and/or its expression was restored in the self-sterile arrangement of the locus. This mirrors what has been reported in other species capable of unidirectional mating-type switching, providing the strongest support for a conserved MAT1 locus structure that is associated with this process. This study contributes to our understanding of the evolution of unidirectional mating-type switching.


Assuntos
Ascomicetos , Genes Fúngicos Tipo Acasalamento , Humanos , Genes Fúngicos Tipo Acasalamento/genética , Reprodução , Fertilidade/genética , Sequências Repetitivas de Ácido Nucleico , Ascomicetos/genética
2.
Fungal Biol ; 125(6): 427-434, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34024590

RESUMO

Sexual reproduction is ubiquitous in nature, and nowhere is this more so than in the fungi. Heterothallic behaviour is observed when there is a strict requirement of contact between two individuals of opposite mating type for sexual reproduction to occur. In contrast, a homothallic species can complete the entire sexual cycle in isolation, although several genetic mechanisms underpin this self-fertility. These can be inferred by characterising the structure and gene-content of the mating-type locus, which contains genes that are involved in the regulation of sexual reproduction. In this study, the genetic basis of homothallism in Thielaviopsis cerberus was investigated, the only known self-fertile species within this genus. Using genome sequencing and conventional molecular techniques, two versions of the mating-type locus were identified in this species. This is typical of species that have a unidirectional mating-type switching reproductive strategy. The first version was a self-fertile locus that contained four known mating-type genes, while the second was a self-sterile version with a single mating-type gene. The conversion from a self-fertile to a self-sterile locus is likely mediated by a homologous recombination event at two direct repeats present in the self-fertile locus, resulting in the deletion of three mating-type genes and one of the repeats. Both locus versions were present in isolates that were self-fertile, while self-sterility was caused by the presence of only a switched locus. This study provides a clear example of the architectural fluidity in the mating-type loci that is common among even closely related fungal species.


Assuntos
Ascomicetos , Genes Fúngicos Tipo Acasalamento , Ascomicetos/fisiologia , Deleção de Genes , Genes Fúngicos Tipo Acasalamento/genética , Recombinação Homóloga , Reprodução/genética , Especificidade da Espécie
3.
IMA Fungus ; 12(1): 5, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33673862

RESUMO

Draft genomes of Penicillium roqueforti, Fusarium sororula, Chalaropsis populi, and Chrysoporthe puriensis are presented. Penicillium roqueforti is a model fungus for genetics, physiological and metabolic studies, as well as for biotechnological applications. Fusarium sororula and Chrysoporthe puriensis are important tree pathogens, and Chalaropsis populi is a soil-borne root-pathogen. The genome sequences presented here thus contribute towards a better understanding of both the pathogenicity and biotechnological potential of these species.

4.
IMA Fungus ; 11: 19, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014691

RESUMO

Draft genomes of the fungal species Ambrosiella cleistominuta, Cercospora brassicicola, C. citrullina, Physcia stellaris, and Teratosphaeria pseudoeucalypti are presented. Physcia stellaris is an important lichen forming fungus and Ambrosiella cleistominuta is an ambrosia beetle symbiont. Cercospora brassicicola and C. citrullina are agriculturally relevant plant pathogens that cause leaf-spots in brassicaceous vegetables and cucurbits respectively. Teratosphaeria pseudoeucalypti causes severe leaf blight and defoliation of Eucalyptus trees. These genomes provide a valuable resource for understanding the molecular processes in these economically important fungi.

5.
IMA Fungus ; 9: 401-418, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30622889

RESUMO

This genome announcement includes draft genomes from Claviceps purpurea s.lat., including C. arundinis, C. humidiphila and C. cf. spartinae. The draft genomes of Davidsoniella eucalypti, Quambalaria eucalypti and Teratosphaeria destructans, all three important eucalyptus pathogens, are presented. The insect associate Grosmannia galeiformis is also described. The pine pathogen genome of Fusarium circinatum has been assembled into pseudomolecules, based on additional sequence data and by harnessing the known synteny within the Fusarium fujikuroi species complex. This new assembly of the F. circinatum genome provides 12 pseudomolecules that correspond to the haploid chromosome number of F. circinatum. These are comparable to other chromosomal assemblies within the FFSC and will enable more robust genomic comparisons within this species complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...