Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
PNAS Nexus ; 3(3): pgae088, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38456174

RESUMO

High-resolution assessment of historical levels is essential for assessing the health effects of ambient air pollution in the large Indian population. The diversity of geography, weather patterns, and progressive urbanization, combined with a sparse ground monitoring network makes it challenging to accurately capture the spatiotemporal patterns of ambient fine particulate matter (PM2.5) pollution in India. We developed a model for daily average ambient PM2.5 between 2008 and 2020 based on monitoring data, meteorology, land use, satellite observations, and emissions inventories. Daily average predictions at each 1 km × 1 km grid from each learner were ensembled using a Gaussian process regression with anisotropic smoothing over spatial coordinates, and regression calibration was used to account for exposure error. Cross-validating by leaving monitors out, the ensemble model had an R2 of 0.86 at the daily level in the validation data and outperformed each component learner (by 5-18%). Annual average levels in different zones ranged between 39.7 µg/m3 (interquartile range: 29.8-46.8) in 2008 and 30.4 µg/m3 (interquartile range: 22.7-37.2) in 2020, with a cross-validated (CV)-R2 of 0.94 at the annual level. Overall mean absolute daily errors (MAE) across the 13 years were between 14.4 and 25.4 µg/m3. We obtained high spatial accuracy with spatial R2 greater than 90% and spatial MAE ranging between 7.3-16.5 µg/m3 with relatively better performance in urban areas at low and moderate elevation. We have developed an important validated resource for studying PM2.5 at a very fine spatiotemporal resolution, which allows us to study the health effects of PM2.5 across India and to identify areas with exceedingly high levels.

2.
Toxics ; 12(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38393242

RESUMO

In this article, we explored the effects of ultrafine particle (UFP) peak exposure on inflammatory biomarkers and blood lipids using two novel metrics-the intensity of peaks and the frequency of peaks. We used data previously collected by the Community Assessment of Freeway Exposure and Health project from participants in the Greater Boston Area. The UFP exposure data were time-activity-adjusted hourly average concentration, estimated using land use regression models based on mobile-monitored ambient concentrations. The outcome data included C-reactive protein, interleukin-6 (IL-6), tumor necrosis factor-alpha receptor 2 (TNF-RII), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglycerides and total cholesterol. For each health indicator, multivariate regression models were used to assess their associations with UFP peaks (N = 364-411). After adjusting for age, sex, body mass index, smoking status and education level, an increase in UFP peak exposure was significantly (p < 0.05) associated with an increase in TNF-RII and a decrease in HDL and triglycerides. Increases in UFP peaks were also significantly associated with increased IL-6 and decreased total cholesterol, while the same associations were not significant when annual average exposure was used. Our work suggests that analysis using peak exposure metrics could reveal more details about the effect of environmental exposures than the annual average metric.

3.
J Environ Psychol ; 932024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38222971

RESUMO

There is increasing recognition that people are experiencing stress and anxiety around climate change, and that this climate stress/anxiety may be associated with more pro-environmental behavior. However, less is known about whether people's own environmental exposures affect climate stress/anxiety or the relationship between climate stress/anxiety and civic engagement. Using three waves of survey data (2020-2022) from the nationally representative Tufts Equity in Health, Wealth, and Civic Engagement Study of US adults (n = 1071), we assessed relationships among environmental exposures (county-level air pollution, greenness, number of toxic release inventory sites, and heatwaves), self-reported climate stress/anxiety, and civic engagement measures (canvasing behavior, collaborating to solve community problems, personal efficacy to solve community problems, group efficacy to solve community problems, voting behavior). Most participants reported experiencing climate stress/anxiety (61%). In general, the environmental exposures we assessed were not significantly associated with climate stress/anxiety or civic engagement metrics, but climate stress/anxiety was positively associated with most of the civic engagement outcomes (canvassing, personal efficacy, group efficacy, voter preference). Our results support the growing literature that climate stress/anxiety may spur constructive civic action, though do not suggest a consistent relationship between adverse environmental exposures and either climate stress/anxiety or civic engagement. Future research and action addressing the climate crisis should promote climate justice by ensuring mental health support for those who experience climate stress anxiety and by promoting pro-environmental civic engagement efforts.

4.
J Community Health ; 49(1): 91-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37507525

RESUMO

Occupational exposure to SARS-CoV-2 varies by profession, but "essential workers" are often considered in aggregate in COVID-19 models. This aggregation complicates efforts to understand risks to specific types of workers or industries and target interventions, specifically towards non-healthcare workers. We used census tract-resolution American Community Survey data to develop novel essential worker categories among the occupations designated as COVID-19 Essential Services in Massachusetts. Census tract-resolution COVID-19 cases and deaths were provided by the Massachusetts Department of Public Health. We evaluated the association between essential worker categories and cases and deaths over two phases of the pandemic from March 2020 to February 2021 using adjusted mixed-effects negative binomial regression, controlling for other sociodemographic risk factors. We observed elevated COVID-19 case incidence in census tracts in the highest tertile of workers in construction/transportation/buildings maintenance (Phase 1: IRR 1.32 [95% CI 1.22, 1.42]; Phase 2: IRR: 1.19 [1.13, 1.25]), production (Phase 1: IRR: 1.23 [1.15, 1.33]; Phase 2: 1.18 [1.12, 1.24]), and public-facing sales and services occupations (Phase 1: IRR: 1.14 [1.07, 1.21]; Phase 2: IRR: 1.10 [1.06, 1.15]). We found reduced case incidence associated with greater percentage of essential workers able to work from home (Phase 1: IRR: 0.85 [0.78, 0.94]; Phase 2: IRR: 0.83 [0.77, 0.88]). Similar trends exist in the associations between essential worker categories and deaths, though attenuated. Estimating industry-specific risk for essential workers is important in targeting interventions for COVID-19 and other diseases and our categories provide a reproducible and straightforward way to support such efforts.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Ocupações , Indústrias , Massachusetts/epidemiologia
5.
Spat Spatiotemporal Epidemiol ; 47: 100606, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38042531

RESUMO

Public health studies routinely use simplistic methods to calculate proximity-based "access" to greenspace, such as by measuring distances to the geographic centroids of parks or, less frequently, to the perimeter of the park area. Although computationally efficient, these approaches oversimplify exposure measurement because parks often have specific entrance points. In this tutorial paper, we describe how researchers can instead calculate more-accurate access measures using freely available open-source methods. Specifically, we demonstrate processes for calculating "service areas" representing street-network-based buffers of access to parks within set distances and mode of transportation (e.g., 1-km walk or 20-minute drive) using OpenRouteService and QGIS software. We also introduce an advanced method involving the identification of trailheads or parking lots with OpenStreetMap data and show how large parks particularly benefit from this approach. These methods can be used globally and are applicable to analyses of a wide range of studies investigating proximity access to resources.


Assuntos
Meios de Transporte , Caminhada , Humanos , Saúde Pública
6.
Artigo em Inglês | MEDLINE | ID: mdl-37735518

RESUMO

BACKGROUND: Aircraft noise is a key concern for communities surrounding airports, with increasing evidence for health effects and inequitable distributions of exposure. However, there have been limited national-scale assessments of aircraft noise exposure over time and across noise metrics, limiting evaluation of population exposure patterns. OBJECTIVE: We evaluated national-scale temporal trends in aviation noise exposure by airport characteristics and across racial/ethnic populations in the U.S. METHODS: Noise contours were modeled for 90 U.S. airports in 5-year intervals between 1995 and 2015 using the Federal Aviation Administration's Aviation Environmental Design Tool. We utilized linear fixed effects models to estimate changes in noise exposure areas for day-night average sound levels (DNL) of 45, 65, and a nighttime equivalent sound level (Lnight) of 45 A-weighted decibels (dB[A]). We used group-based trajectory modeling to identify distinct groups of airports sharing underlying characteristics. We overlaid noise contours and Census tract data from the U.S. Census Bureau and American Community Surveys for 2000 to 2015 to estimate exposure changes overall and by race/ethnicity. RESULTS: National-scale analyses showed non-monotonic trends in mean exposed areas that peaked in 2000, followed by a 37% decrease from 2005 to 2010 and a subsequent increase in 2015. We identified four distinct trajectory groups of airports sharing latent characteristics related to size and activity patterns. Those populations identifying as minority (e.g., Hispanic/Latino, Black/African American, Asian) experienced higher proportions of exposure relative to their subgroup populations compared to non-Hispanic or White populations across all years, indicating ethnic and racial disparities in airport noise exposure that persist over time. SIGNIFICANCE: Overall, these data identified differential exposure trends across airports and subpopulations, helping to identify vulnerable communities for aviation noise in the U.S. IMPACT STATEMENT: We conducted a descriptive analysis of temporal trends in aviation noise exposure in the U.S. at a national level. Using data from 90 U.S. airports over a span of two decades, we characterized the noise exposure trends overall and by airport characteristics, while estimating the numbers of exposed by population demographics to help identify the impact on vulnerable communities who may bear the burden of aircraft noise exposure.

7.
Geohealth ; 7(8): e2023GH000830, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37538511

RESUMO

Greenspace in schools might enhance students' academic performance. However, the literature-dominated by ecological studies at the school level in countries from the Northern Hemisphere-presents mixed evidence of a beneficial association. We evaluated the association between school greenness and student-level academic performance in Santiago, Chile, a capital city of the Global South. This cross-sectional study included 281,695 fourth-grade students attending 1,498 public, charter, and private schools in Santiago city between 2014 and 2018. Student-level academic performance was assessed using standardized test scores and indicators of attainment of learning standards in mathematics and reading. School greenness was estimated using Normalized Difference Vegetation Index (NDVI). Linear and generalized linear mixed-effects models were fit to evaluate associations, adjusting for individual- and school-level sociodemographic factors. Analyses were stratified by school type. In fully adjusted models, a 0.1 increase in school greenness was associated with higher test scores in mathematics (36.9 points, 95% CI: 2.49; 4.88) and in reading (1.84 points, 95% CI: 0.73; 2.95); as well as with higher odds of attaining learning standards in mathematics (OR: 1.20, 95% CI: 1.12; 1.28) and reading (OR: 1.07, 95% CI: 1.02; 1.13). Stratified analysis showed differences by school type, with associations of greater magnitude and strength for students attending public schools. No significant associations were detected for students in private schools. Higher school greenness was associated with improved individual-level academic outcomes among elementary-aged students in a capital city in South America. Our results highlight the potential of greenness in the school environment to moderate educational and environmental inequalities in urban areas.

8.
medRxiv ; 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37293071

RESUMO

Certain environmental exposures, such as air pollution, are associated with COVID-19 incidence and mortality. To determine whether environmental context is associated with other COVID-19 experiences, we used data from the nationally representative Tufts Equity in Health, Wealth, and Civic Engagement Study data (n=1785; three survey waves 2020-2022). Environmental context was assessed using self-reported climate stress and county-level air pollution, greenness, toxic release inventory site, and heatwave data. Self-reported COVID-19 experiences included willingness to vaccinate against COVID-19, health impacts from COVID-19, receiving assistance for COVID-19, and provisioning assistance for COVID-19. Self-reported climate stress in 2020 or 2021 was associated with increased COVID-19 vaccination willingness by 2022 (odds ratio [OR] = 2.35; 95% confidence interval [CI] = 1.47, 3.76), even after adjusting for political affiliation (OR = 1.79; 95% CI = 1.09, 2.93). Self-reported climate stress in 2020 was also associated with increased likelihood of receiving COVID-19 assistance by 2021 (OR = 1.89; 95% CI = 1.29, 2.78). County-level exposures (i.e., less greenness, more toxic release inventory sites, more heatwaves) were associated with increased vaccination willingness. Air pollution exposure in 2020 was positively associated with likelihood of provisioning COVID-19 assistance in 2020 (OR = 1.16 per µg/m3; 95% CI = 1.02, 1.32). Associations between certain environmental exposures and certain COVID-19 outcomes were stronger among those who identify as a race/ethnicity other than non-Hispanic White and among those who reported experiencing discrimination; however, these trends were not consistent. A latent variable representing a summary construct for environmental context was associated with COVID-19 vaccination willingness. Our results add to the growing body of literature suggesting that intersectional equity issues affecting likelihood of exposure to adverse environmental conditions are also associated with health-related outcomes.

9.
Environ Res ; 225: 115584, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36868447

RESUMO

Aircraft emissions contribute to overall ambient air pollution, including ultrafine particle (UFP) concentrations. However, accurately ascertaining aviation contributions to UFP is challenging due to high spatiotemporal variability along with intermittent aviation emissions. The objective of this study was to evaluate the impact of arrival aircraft on particle number concentration (PNC), a proxy for UFP, across six study sites 3-17 km from a major arrival aircraft flight path into Boston Logan International Airport by utilizing real-time aircraft activity and meteorological data. Ambient PNC at all monitoring sites was similar at the median but had greater variation at the 95th and 99th percentiles with more than two-fold increases in PNC observed at sites closer to the airport. PNC was elevated during the hours with high aircraft activity with sites closest to the airport exhibiting stronger signals when downwind from the airport. Regression models indicated that the number of arrival aircraft per hour was associated with measured PNC at all six sites, with a maximum contribution of 50% of total PNC at a monitor 3 km from the airport during hours with arrival activity on the flight path of interest (26% across all hours). Our findings suggest strong but intermittent contributions from arrival aircraft to ambient PNC in communities near airports.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Aeroportos , Poluentes Atmosféricos/análise , Boston , Aeronaves , Poluição do Ar/análise , Massachusetts , Emissões de Veículos/análise , Monitoramento Ambiental
10.
Public Health Rep ; 138(6): 955-962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726308

RESUMO

OBJECTIVE: Although extreme heat can impact the health of anyone, certain groups are disproportionately affected. In urban settings, cooling centers are intended to reduce heat exposure by providing air-conditioned spaces to the public. We examined the characteristics of populations living near cooling centers and how well they serve areas with high social vulnerability. METHODS: We identified 1402 cooling centers in 81 US cities from publicly available sources and analyzed markers of urban heat and social vulnerability in relation to their locations. Within each city, we developed cooling center access areas, defined as the geographic area within a 0.5-mile walk from a center, and compared sociodemographic characteristics of populations living within versus outside the access areas. We analyzed results by city and geographic region to evaluate climate-relevant regional differences. RESULTS: Access to cooling centers differed among cities, ranging from 0.01% (Atlanta, Georgia) to 63.2% (Washington, DC) of the population living within an access area. On average, cooling centers were in areas that had higher levels of social vulnerability, as measured by the number of people living in urban heat islands, annual household income below poverty, racial and ethnic minority status, low educational attainment, and high unemployment rate. However, access areas were less inclusive of adult populations aged ≥65 years than among populations aged <65 years. CONCLUSION: Given the large percentage of individuals without access to cooling centers and the anticipated increase in frequency and severity of extreme heat events, the current distribution of centers in the urban areas that we examined may be insufficient to protect individuals from the adverse health effects of extreme heat, particularly in the absence of additional measures to reduce risk.


Assuntos
Calor Extremo , Adulto , Humanos , Calor Extremo/efeitos adversos , Cidades/epidemiologia , Temperatura Alta , Etnicidade , Grupos Minoritários
11.
Ann Epidemiol ; 80: 62-68.e3, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822278

RESUMO

PURPOSE: When studying health risks across a large geographic region such as a state or province, researchers often assume that finer-resolution data on health outcomes and risk factors will improve inferences by avoiding ecological bias and other issues associated with geographic aggregation. However, coarser-resolution data (e.g., at the town or county-level) are more commonly publicly available and packaged for easier access, allowing for rapid analyses. The advantages and limitations of using finer-resolution data, which may improve precision at the cost of time spent gaining access and processing data, have not been considered in detail to date. METHODS: We systematically examine the implications of conducting town-level mixed-effect regression analyses versus census-tract-level analyses to study sociodemographic predictors of COVID-19 in Massachusetts. In a series of negative binomial regressions, we vary the spatial resolution of the outcome, the resolution of variable selection, and the resolution of the random effect to allow for more direct comparison across models. RESULTS: We find stability in some estimates across scenarios, changes in magnitude, direction, and significance in others, and tighter confidence intervals on the census-tract level. Conclusions regarding sociodemographic predictors are robust when regions of high concentration remain consistent across town and census-tract resolutions. CONCLUSIONS: Inferences about high-risk populations may be misleading if derived from town- or county-resolution data, especially for covariates that capture small subgroups (e.g., small racial minority populations) or are geographically concentrated or skewed (e.g., % college students). Our analysis can help inform more rapid and efficient use of public health data by identifying when finer-resolution data are truly most informative, or when coarser-resolution data may be misleading.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Massachusetts/epidemiologia , Fatores de Risco , Estudantes , Análise de Regressão
12.
Sci Total Environ ; 870: 161874, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36716891

RESUMO

BACKGROUND: Evidence suggests that exposure to traffic-related air pollution (TRAP) and social stressors can increase inflammation. Given that there are many different markers of TRAP exposure, socio-economic status (SES), and inflammation, analytical approaches can leverage multiple markers to better elucidate associations. In this study, we applied structural equation modeling (SEM) to assess the association between a TRAP construct and a SES construct with an inflammation construct. METHODS: This analysis was conducted as part of the Community Assessment of Freeway Exposure and Health (CAFEH; N = 408) study. Air pollution was characterized using a spatiotemporal model of particle number concentration (PNC) combined with individual participant time-activity adjustment (TAA). TAA-PNC and proximity to highways were considered for a construct of TRAP exposure. Participant demographics on education and income for an SES construct were assessed via questionnaires. Blood samples were analyzed for high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and tumor necrosis factor-α receptor II (TNFRII), which were considered for the construct for inflammation. We conducted SEM and compared our findings with those obtained using generalized linear models (GLM). RESULTS: Using GLM, TAA-PNC was associated with multiple inflammation biomarkers. An IQR (10,000 particles/cm3) increase of TAA-PNC was associated with a 14 % increase in hsCRP in the GLM. Using SEM, the association between the TRAP construct and the inflammation construct was twice as large as the associations with any individual inflammation biomarker. SES had an inverse association with inflammation in all models. Using SEM to estimate the indirect effects of SES on inflammation through the TRAP construct strengthened confidence in the association of TRAP with inflammation. CONCLUSION: Our TRAP construct resulted in stronger associations with a combined construct for inflammation than with individual biomarkers, reinforcing the value of statistical approaches that combine multiple, related exposures or outcomes. Our findings are consistent with inflammatory risk from TRAP exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/análise , Proteína C-Reativa/metabolismo , Material Particulado/análise , Análise de Classes Latentes , Inflamação/induzido quimicamente , Biomarcadores/análise , Exposição Ambiental/análise
13.
J Expo Sci Environ Epidemiol ; 33(2): 237-243, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35145207

RESUMO

BACKGROUND/OBJECTIVE: Lack of access to resources such as medical facilities and grocery stores is related to poor health outcomes and inequities, particularly in an environmental justice framework. There can be substantial differences in quantifying "access" to such resources, depending on the geospatial method used to generate distance estimates. METHODS: We compared three methods for calculating distance to the nearest grocery store to illustrate differential access at the census block-group level in the Atlanta metropolitan area, including: Euclidean distance estimation, service areas incorporating roadways and other factors, and cost distance for every point on the map. RESULTS: We found notable differences in access across the three estimation techniques, implying a high potential for exposure misclassification by estimation method. There was a lack of nuanced exposure in the highest- and lowest-access areas using the Euclidean distance method. We found an Intraclass Correlation Coefficient (ICC) of 0.69 (0.65, 0.73), indicating moderate agreement between estimation methods. SIGNIFICANCE: As compared with Euclidean distance, service areas and cost distance may represent a more meaningful characterization of "access" to resources. Each method has tradeoffs in computational resources required versus potential improvement in exposure classification. Careful consideration of the method used for determining "access" will reduce subsequent misclassifications.


Assuntos
Disparidades nos Níveis de Saúde , Características da Vizinhança , Determinantes Sociais da Saúde , Humanos , Censos , Georgia , Geografia Médica
14.
Environ Res ; 216(Pt 2): 114607, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279910

RESUMO

BACKGROUND: Studies have shown that prenatal heat exposure may impact fetal growth, but few studies have examined the critical windows of susceptibility. As extreme heat events and within season temperature variability is expected to increase in frequency, it is important to understand how this may impact gestational growth. OBJECTIVES: We investigated associations between various measures of weekly prenatal heat exposure (mean and standard deviation (SD) of temperature and heat index (HI), derived using temperature in °C and dew point) and term birthweight or odds of being born small for gestational age (SGA) to identify critical windows of susceptibility. METHODS: We analyzed data from mother-child dyads (n = 4442) in the Boston-based Children's HealthWatch cohort. Birthweights were collected from survey data and electronic health records. Daily temperature and HI values were obtained from 800 m gridded spatial climate datasets aggregated by the PRISM Climate Group. Distributed lag-nonlinear models were used to assess the effect of the four weekly heat metrics on measures of gestational growth (birthweight, SGA, and birthweight z-scores). Analyses were stratified by child sex and maternal homelessness status during pregnancy. RESULTS: HI variability was significantly associated with decreased term birthweight during gestational weeks 10-29 and with SGA for weeks 9-26. Cumulative effects for these time periods were -287.4 g (95% CI: -474.1 g, -100.8 g for birthweight and 4.7 (95% CI: 1.6, 14.1) for SGA. Temperature variability was also significantly associated with decreased birthweight between weeks 15 and 26. The effects for mean heat measures on term birthweight and SGA were not significant for any gestational week. Stratification by sex revealed a significant effect on term birthweight in females between weeks 23-28 and in males between weeks 9-26. Strongest effects of HI variability on term birthweight were found in children of mothers who experienced homelessness during pregnancy. Weekly HI variability was the heat metric most strongly associated with measures of gestational growth. The effects observed were largest in males and those who experienced homelessness during pregnancy. DISCUSSION: Given the impact of heat variability on birthweight and risk of SGA, it is important for future heat warnings to incorporate measure of heat index and temperature variability.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Recém-Nascido , Gravidez , Masculino , Feminino , Humanos , Peso ao Nascer , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Temperatura Alta , Recém-Nascido Pequeno para a Idade Gestacional , Desenvolvimento Fetal , Retardo do Crescimento Fetal , Idade Gestacional
15.
J Racial Ethn Health Disparities ; 10(4): 2071-2080, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36056195

RESUMO

Infectious disease surveillance frequently lacks complete information on race and ethnicity, making it difficult to identify health inequities. Greater awareness of this issue has occurred due to the COVID-19 pandemic, during which inequities in cases, hospitalizations, and deaths were reported but with evidence of substantial missing demographic details. Although the problem of missing race and ethnicity data in COVID-19 cases has been well documented, neither its spatiotemporal variation nor its particular drivers have been characterized. Using individual-level data on confirmed COVID-19 cases in Massachusetts from March 2020 to February 2021, we show how missing race and ethnicity data: (1) varied over time, appearing to increase sharply during two different periods of rapid case growth; (2) differed substantially between towns, indicating a nonrandom distribution; and (3) was associated significantly with several individual- and town-level characteristics in a mixed-effects regression model, suggesting a combination of personal and infrastructural drivers of missing data that persisted despite state and federal data-collection mandates. We discuss how a variety of factors may contribute to persistent missing data but could potentially be mitigated in future contexts.


Assuntos
COVID-19 , Etnicidade , Humanos , Pandemias , Grupos Raciais , Massachusetts/epidemiologia
16.
JMIR Form Res ; 6(9): e39046, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35969168

RESUMO

BACKGROUND: With the increased popularity of mobile menstrual tracking apps and boosted Facebook posts, there is a unique opportunity to recruit research study participants from across the globe via these modalities to evaluate women's health. However, no studies to date have assessed the feasibility of using these recruitment sources for epidemiological research on ovulation and menstruation. OBJECTIVE: The objective of this study was to assess the feasibility of recruiting a diverse sample of women to an epidemiological study of ovulation and menstruation (OM) health (OM Global Health Study) using digital recruitment sources. The feasibility and diversity were assessed via click and participation rates, geographic location, BMI, smoking status, and other demographic information. METHODS: Participants were actively recruited via in-app messages using the menstrual tracking app Clue (BioWink GmbH) and a boosted Facebook post by DivaCup (Diva International Inc.). Other passive recruitment methods also took place throughout the recruitment period (eg, email communications, blogs, other social media). The proportion of participants who visited the study website after viewing and clicking the hypertext link (click rates) in the in-app messages and boosted Facebook post and the proportion of participants who completed the surveys per the number of completed consent and eligibility screeners (participation rates) were used to quantify the success of recruiting participants to the study website and study survey completion, respectively. Survey completion was defined as finishing the pregnancy and birth history section of the OM Global Health Study questionnaire. RESULTS: The recruitment period was from February 27, 2018, through January 24, 2020. In-app messages and the boosted Facebook post were seen by 104,000 and 21,400 people, respectively. Overall, 215 participants started the OM Global Health Study survey, of which 140 (65.1%), 39 (18.1%), and 36 (16.8%) participants were recruited via the app, the boosted Facebook post, and other passive recruitment methods, respectively. The click rate via the app was 18.9% (19,700 clicks/104,000 ad views) and 1.6% via the boosted Facebook post (340 clicks/21,400 ad views.) The overall participation rate was 44.6% (198/444), and the average participant age was 21.8 (SD 6.1) years. In terms of geographic and racial/ethnic diversity, 91 (44.2%) of the participants resided outside the United States and 147 (70.7%) identified as non-Hispanic White. In-app recruitment produced the most geographically diverse stream, with 44 (32.8%) of the 134 participants in Europe, 77 (57.5%) in North America, and 13 (9.8%) in other parts of the world. Both human error and nonhuman procedural breakdowns occurred during the recruitment process, including a computer programming error related to age eligibility and a hacking attempt by an internet bot. CONCLUSIONS: In-app messages using the menstrual tracking app Clue were the most successful method for recruiting participants from many geographic regions and producing the greatest numbers of started and completed surveys. This study demonstrates the utility of digital recruitment to enroll participants from diverse geographic locations and provides some lessons to avoid technical recruitment errors in future digital recruitment strategies for epidemiological research.

17.
Environ Health ; 21(1): 26, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35180862

RESUMO

BACKGROUND: Polycystic ovary morphology (PCOM) is an ultrasonographic finding that can be present in women with ovulatory disorder and oligomenorrhea due to hypothalamic, pituitary, and ovarian dysfunction. While air pollution has emerged as a possible disrupter of hormone homeostasis, limited research has been conducted on the association between air pollution and PCOM. METHODS: We conducted a longitudinal cohort study using electronic medical records data of 5,492 women with normal ovaries at the first ultrasound that underwent a repeated pelvic ultrasound examination during the study period (2004-2016) at Boston Medical Center. Machine learning text algorithms classified PCOM by ultrasound. We used geocoded home address to determine the ambient annual average PM2.5 exposures and categorized into tertiles of exposure. We used Cox Proportional Hazards models on complete data (n = 3,994), adjusting for covariates, and additionally stratified by race/ethnicity and body mass index (BMI). RESULTS: Cumulative exposure to PM2.5 during the study ranged from 4.9 to 17.5 µg/m3 (mean = 10.0 µg/m3). On average, women were 31 years old and 58% were Black/African American. Hazard ratios and 95% confidence intervals (CI) comparing the second and third PM2.5 exposure tertile vs. the reference tertile were 1.12 (0.88, 1.43) and 0.89 (0.62, 1.28), respectively. No appreciable differences were observed across race/ethnicity. Among women with BMI ≥ 30 kg/m2, we observed weak inverse associations with PCOM for the second (HR: 0.93, 95% CI: 0.66, 1.33) and third tertiles (HR: 0.89, 95% CI: 0.50, 1.57). CONCLUSIONS: In this study of reproductive-aged women, we observed little association between PM2.5 concentrations and PCOM incidence. No dose response relationships were observed nor were estimates appreciably different across race/ethnicity within this clinically sourced cohort.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Síndrome do Ovário Policístico , Adulto , Poluentes Atmosféricos/toxicidade , Poluição do Ar/estatística & dados numéricos , Estudos de Coortes , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Feminino , Humanos , Estudos Longitudinais , Masculino , Material Particulado/toxicidade , Síndrome do Ovário Policístico/diagnóstico por imagem , Síndrome do Ovário Policístico/epidemiologia
18.
J Expo Sci Environ Epidemiol ; 32(2): 213-222, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35094014

RESUMO

BACKGROUND: The Normalized Difference Vegetation Index (NDVI) is a measure of greenness widely used in environmental health research. High spatial resolution NDVI has become increasingly available; however, the implications of its use in exposure assessment are not well understood. OBJECTIVE: To quantify the impact of NDVI spatial resolution on greenness exposure misclassification. METHODS: Greenness exposure was assessed for 31,328 children in the Greater Boston Area in 2016 using NDVI from MODIS (250 m2), Landsat 8 (30 m2), Sentinel-2 (10 m2), and the National Agricultural Imagery Program (NAIP, 1 m2). We compared continuous and categorical greenness estimates for multiple buffer sizes under a reliability assessment framework. Exposure misclassification was evaluated using NAIP data as reference. RESULTS: Greenness estimates were greater for coarser resolution NDVI, but exposure distributions were similar. Continuous estimates showed poor agreement and high consistency, while agreement in categorical estimates ranged from poor to strong. Exposure misclassification was higher with greater differences in resolution, smaller buffers, and greater number of exposure quantiles. The proportion of participants changing greenness quantiles was higher for MODIS (11-60%), followed by Landsat 8 (6-44%), and Sentinel-2 (5-33%). SIGNIFICANCE: Greenness exposure assessment is sensitive to spatial resolution of NDVI, aggregation area, and number of exposure quantiles. Greenness exposure decisions should ponder relevant pathways for specific health outcomes and operational considerations.


Assuntos
Saúde Ambiental , Boston , Criança , Estudos de Coortes , Humanos , Reprodutibilidade dos Testes
19.
J Expo Sci Environ Epidemiol ; 32(4): 615-628, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34667309

RESUMO

INTRODUCTION: The adverse health outcomes of traffic-related ultrafine particles (UFPs) disproportionally impact near-highway neighborhoods. Current studies focus on either short-term health outcomes associated with short-term UFP exposures averaged over days or weeks, or long-term outcomes associated with long-term (yearly or longer) average UFP exposures. We hypothesized that frequent and repeated exposure to short-term UFP peaks that last for just hours could overwhelm or alter physiological defensive responses, resulting in long-term health issues. Herein, we propose a new exposure metric for measuring the cumulative effect of these peak exposures. METHOD: We used UFP exposure data estimated by the Community Assessment of Freeway Exposure and Health (CAFEH) project, which recruited 704 participants from three pairs of near-highway/urban background neighborhoods in the Greater Boston Area between 2009 and 2012. CAFEH developed land use regression (LUR) models to estimate hourly averages of ambient UFP levels within the study areas based on mobile-monitored UFP data, and applied time-activity adjustment (TAA) to calculate adjusted final hourly estimates. Our alternative metric assigns cumulative peak exposure, which is determined as either the intensity (a high percentile of an individual's adjusted hourly UFP estimates) or the frequency (the number of hours with adjusted UFP estimates greater than a high percentile of all adjusted hourly UFP estimates of all participants in the study area) of UFP peaks. RESULTS: After TAA was applied, for most of the time, our cumulative peak exposure metrics were not strongly correlated with the annual average. However, the level of correlation varied greatly from neighborhood to neighborhood (Spearman's R ranges from 0.39 to 0.97). CONCLUSION: There was variation in UFP peak exposure that was not explained by the annual average, suggesting that our proposed peak metric distinct from annual average exposure metric.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Boston , Monitoramento Ambiental/métodos , Humanos , Tamanho da Partícula , Material Particulado/análise
20.
Influenza Other Respir Viruses ; 16(2): 213-221, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34761531

RESUMO

BACKGROUND: The COVID-19 pandemic has highlighted the need for targeted local interventions given substantial heterogeneity within cities and counties. Publicly available case data are typically aggregated to the city or county level to protect patient privacy, but more granular data are necessary to identify and act upon community-level risk factors that can change over time. METHODS: Individual COVID-19 case and mortality data from Massachusetts were geocoded to residential addresses and aggregated into two time periods: "Phase 1" (March-June 2020) and "Phase 2" (September 2020 to February 2021). Institutional cases associated with long-term care facilities, prisons, or homeless shelters were identified using address data and modeled separately. Census tract sociodemographic and occupational predictors were drawn from the 2015-2019 American Community Survey. We used mixed-effects negative binomial regression to estimate incidence rate ratios (IRRs), accounting for town-level spatial autocorrelation. RESULTS: Case incidence was elevated in census tracts with higher proportions of Black and Latinx residents, with larger associations in Phase 1 than Phase 2. Case incidence associated with proportion of essential workers was similarly elevated in both Phases. Mortality IRRs had differing patterns from case IRRs, decreasing less substantially between Phases for Black and Latinx populations and increasing between Phases for proportion of essential workers. Mortality models excluding institutional cases yielded stronger associations for age, race/ethnicity, and essential worker status. CONCLUSIONS: Geocoded home address data can allow for nuanced analyses of community disease patterns, identification of high-risk subgroups, and exclusion of institutional cases to comprehensively reflect community risk.


Assuntos
COVID-19 , Disparidades nos Níveis de Saúde , Humanos , Massachusetts/epidemiologia , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...