Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Biomed Eng ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710838

RESUMO

Following immunization, lymph nodes dynamically expand and contract. The mechanical and cellular changes enabling the early-stage expansion of lymph nodes have been characterized, yet the durability of such responses and their implications for adaptive immunity and vaccine efficacy are unknown. Here, by leveraging high-frequency ultrasound imaging of the lymph nodes of mice, we report more potent and persistent lymph-node expansion for animals immunized with a mesoporous silica vaccine incorporating a model antigen than for animals given bolus immunization or standard vaccine formulations such as alum, and that durable and robust lymph-node expansion was associated with vaccine efficacy and adaptive immunity for 100 days post-vaccination in a mouse model of melanoma. Immunization altered the mechanical and extracellular-matrix properties of the lymph nodes, drove antigen-dependent proliferation of immune and stromal cells, and altered the transcriptional features of dendritic cells and inflammatory monocytes. Strategies that robustly maintain lymph-node expansion may result in enhanced vaccination outcomes.

2.
Nat Commun ; 14(1): 4703, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543621

RESUMO

TGFß signaling is associated with non-response to immune checkpoint blockade in patients with advanced cancers, particularly in the immune-excluded phenotype. While previous work demonstrates that converting tumors from excluded to inflamed phenotypes requires attenuation of PD-L1 and TGFß signaling, the underlying cellular mechanisms remain unclear. Here, we show that TGFß and PD-L1 restrain intratumoral stem cell-like CD8 T cell (TSCL) expansion and replacement of progenitor-exhausted and dysfunctional CD8 T cells with non-exhausted T effector cells in the EMT6 tumor model in female mice. Upon combined TGFß/PD-L1 blockade IFNγhi CD8 T effector cells show enhanced motility and accumulate in the tumor. Ensuing IFNγ signaling transforms myeloid, stromal, and tumor niches to yield an immune-supportive ecosystem. Blocking IFNγ abolishes the anti-PD-L1/anti-TGFß therapy efficacy. Our data suggest that TGFß works with PD-L1 to prevent TSCL expansion and replacement of exhausted CD8 T cells, thereby maintaining the T cell compartment in a dysfunctional state.


Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Linfócitos T CD8-Positivos , Inibidores de Checkpoint Imunológico , Fator de Crescimento Transformador beta , Feminino , Animais , Camundongos , Diferenciação Celular , Linfócitos T CD8-Positivos/imunologia , Células-Tronco , Antígeno B7-H1/antagonistas & inibidores , Fator de Crescimento Transformador beta/antagonistas & inibidores , Interferon gama/imunologia , Exaustão das Células T , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/imunologia , RNA-Seq
3.
Adv Mater ; 33(31): e2100628, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34118167

RESUMO

The success of immunotherapy with immune checkpoint inhibitors (ICIs) in a subset of individuals has been very exciting. However, in many cancers, responses to current ICIs are modest and are seen only in a small subsets of patients. Herein, a widely applicable approach that increases the benefit of ICIs is reported. Intratumoral administration of augmenting immune response and inhibiting suppressive environment of tumors-AIRISE-02 nanotherapeutic that co-delivers CpG and STAT3 siRNA-results in not only regression of the injected tumor, but also tumors at distant sites in multiple tumor model systems. In particular, three doses of AIRISE-02 in combination with systemic ICIs completely cure both treated and untreated aggressive melanoma tumors in 63% of mice, while ICIs alone do not cure any mice. A long-term memory immune effect is also reported. AIRISE-02 is effective in breast and colon tumor models as well. Lastly, AIRISE-02 is well tolerated in mice and nonhuman primates. This approach combines multiple therapeutic agents into a single nanoconstruct to create whole-body immune responses across multiple cancer types. Being a local therapeutic, AIRISE-02 circumvents regulatory challenges of systemic nanoparticle delivery, facilitating rapid translation to the clinic. AIRISE-02 is under investigational new drug (IND)-enabling studies, and clinical trials will soon follow.


Assuntos
Imunoterapia , Nanopartículas , RNA Interferente Pequeno , Animais , Camundongos , Vacinação
4.
J Vis Exp ; (143)2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30663703

RESUMO

Leukocyte egress from peripheral tissues to draining lymph nodes is not only critical for immune surveillance and initiation but also contributes to the resolution of peripheral tissue responses. While a variety of methods are used to quantify leukocyte egress from non-lymphoid, peripheral tissues, the cellular and molecular mechanisms that govern context-dependent egress remain poorly understood. Here, we describe the use of in situ photoconversion for quantitative analysis of leukocyte egress from murine skin and tumors. Photoconversion allows for the direct labeling of leukocytes resident within cutaneous tissue. Though skin exposure to violet light induces local inflammatory responses characterized by leukocyte infiltrates and vascular leakiness, in a head-to-head comparison with transdermal application of fluorescent tracers, photoconversion specifically labeled migratory dendritic cell populations and simultaneously enabled the quantification of myeloid and lymphoid egress from cutaneous microenvironments and tumors. The mechanisms of leukocyte egress remain a missing component in our understanding of intratumoral leukocyte complexity, and thus the application of the tools described herein will provide unique insight into the dynamics of tumor immune microenvironments both at steady state and in response to therapy.


Assuntos
Leucócitos/metabolismo , Vasos Linfáticos/metabolismo , Neoplasias/patologia , Pele/imunologia , Animais , Linfonodos/imunologia , Camundongos
5.
Front Immunol ; 9: 2662, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30498499

RESUMO

In response to pathological challenge, the host generates rapid, protective adaptive immune responses while simultaneously maintaining tolerance to self and limiting immune pathology. Peripheral tissues (e.g., skin, gut, lung) are simultaneously the first site of pathogen-encounter and also the location of effector function, and mounting evidence indicates that tissues act as scaffolds to facilitate initiation, maintenance, and resolution of local responses. Just as both effector and memory T cells must adapt to their new interstitial environment upon infiltration, tissues are also remodeled in the context of acute inflammation and disease. In this review, we present the biochemical and biophysical mechanisms by which non-hematopoietic stromal cells and extracellular matrix molecules collaborate to regulate T cell behavior in peripheral tissue. Finally, we discuss how tissue remodeling in the context of tumor microenvironments impairs T cell accumulation and function contributing to immune escape and tumor progression.


Assuntos
Células-Tronco Hematopoéticas/imunologia , Neoplasias/imunologia , Linfócitos T/imunologia , Animais , Matriz Extracelular/imunologia , Humanos , Memória Imunológica/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia
6.
J Exp Med ; 215(12): 3057-3074, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30381467

RESUMO

Mechanisms of immune suppression in peripheral tissues counteract protective immunity to prevent immunopathology and are coopted by tumors for immune evasion. While lymphatic vessels facilitate T cell priming, they also exert immune suppressive effects in lymph nodes at steady-state. Therefore, we hypothesized that peripheral lymphatic vessels acquire suppressive mechanisms to limit local effector CD8+ T cell accumulation in murine skin. We demonstrate that nonhematopoietic PD-L1 is largely expressed by lymphatic and blood endothelial cells and limits CD8+ T cell accumulation in tumor microenvironments. IFNγ produced by tissue-infiltrating, antigen-specific CD8+ T cells, which are in close proximity to tumor-associated lymphatic vessels, is sufficient to induce lymphatic vessel PD-L1 expression. Disruption of IFNγ-dependent crosstalk through lymphatic-specific loss of IFNγR boosts T cell accumulation in infected and malignant skin leading to increased viral pathology and tumor control, respectively. Consequently, we identify IFNγR as an immunological switch in lymphatic vessels that balances protective immunity and immunopathology leading to adaptive immune resistance in melanoma.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Derme/imunologia , Interferon gama/imunologia , Vasos Linfáticos/imunologia , Melanoma/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias Cutâneas/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Derme/patologia , Interferon gama/genética , Vasos Linfáticos/patologia , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Receptores de Interferon/genética , Receptores de Interferon/imunologia , Neoplasias Cutâneas/patologia , Receptor de Interferon gama
7.
Cell Rep ; 20(13): 3176-3187, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28954233

RESUMO

Lymphatic vessels lie at the interface between peripheral sites of pathogen entry, adaptive immunity, and the systemic host. Though the paradigm is that their open structure allows for passive flow of infectious particles from peripheral tissues to lymphoid organs, virus applied to skin by scarification does not spread to draining lymph nodes. Using cutaneous infection by scarification, we analyzed the effect of viral infection on lymphatic transport and evaluated its role at the host-pathogen interface. We found that, in the absence of lymphatic vessels, canonical lymph-node-dependent immune induction was impaired, resulting in exacerbated pathology and compensatory, systemic priming. Furthermore, lymphatic vessels decouple fluid and cellular transport in an interferon-dependent manner, leading to viral sequestration while maintaining dendritic cell transport for immune induction. In conclusion, we found that lymphatic vessels balance immune activation and viral dissemination and act as an "innate-like" component of tissue host viral defense.


Assuntos
Sistema Linfático/virologia , Vasos Linfáticos/virologia , Animais , Humanos , Linfonodos/imunologia , Camundongos , Viroses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...