Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AoB Plants ; 12(1): plaa003, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32128104

RESUMO

Conserving genetic diversity in rare and narrowly distributed endemic species is essential to maintain their evolutionary potential and minimize extinction risk under future environmental change. In this study we assess neutral and adaptive genetic structure and genetic diversity in Brasilianthus carajensis (Melastomataceae), an endemic herb from Amazonian Savannas. Using RAD sequencing we identified a total of 9365 SNPs in 150 individuals collected across the species' entire distribution range. Relying on assumption-free genetic clustering methods and environmental association tests we then compared neutral with adaptive genetic structure. We found three neutral and six adaptive genetic clusters, which could be considered management units (MU) and adaptive units (AU), respectively. Pairwise genetic differentiation (F ST) ranged between 0.024 and 0.048, and even though effective population sizes were below 100, no significant inbreeding was found in any inferred cluster. Nearly 10 % of all analysed sequences contained loci associated with temperature and precipitation, from which only 25 sequences contained annotated proteins, with some of them being very relevant for physiological processes in plants. Our findings provide a detailed insight into genetic diversity, neutral and adaptive genetic structure in a rare endemic herb, which can help guide conservation and management actions to avoid the loss of unique genetic variation.

2.
Front Genet ; 10: 1011, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798621

RESUMO

Although habitat loss has large, consistently negative effects on biodiversity, its genetic consequences are not yet fully understood. This is because measuring the genetic consequences of habitat loss requires accounting for major methodological limitations like the confounding effect of habitat fragmentation, historical processes underpinning genetic differentiation, time-lags between the onset of disturbances and genetic outcomes, and the need for large numbers of samples, genetic markers, and replicated landscapes to ensure sufficient statistical power. In this paper we overcame all these challenges to assess the genetic consequences of extreme habitat loss driven by mining in two herbs endemic to Amazonian savannas. Relying on genotyping-by-sequencing of hundreds of individuals collected across two mining landscapes, we identified thousands of neutral and independent single-nucleotide polymorphisms (SNPs) in each species and used these to evaluate population structure, genetic diversity, and gene flow. Since open-pit mining in our study region rarely involves habitat fragmentation, we were able to assess the independent effect of habitat loss. We also accounted for the underlying population structure when assessing landscape effects on genetic diversity and gene flow, examined the sensitivity of our analyses to the resolution of spatial data, and used annual species and cross-year analyses to minimize and quantify possible time-lag effects. We found that both species are remarkably resilient, as genetic diversity and gene flow patterns were unaffected by habitat loss. Whereas historical habitat amount was found to influence inbreeding; heterozygosity and inbreeding were not affected by habitat loss in either species, and gene flow was mainly influenced by geographic distance, pre-mining land cover, and local climate. Our study demonstrates that it is not possible to generalize about the genetic consequences of habitat loss, and implies that future conservation efforts need to consider species-specific genetic information.

3.
Evol Appl ; 12(6): 1164-1177, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31293629

RESUMO

Habitat degradation and climate change are currently threatening wild pollinators, compromising their ability to provide pollination services to wild and cultivated plants. Landscape genomics offers powerful tools to assess the influence of landscape modifications on genetic diversity and functional connectivity, and to identify adaptations to local environmental conditions that could facilitate future bee survival. Here, we assessed range-wide patterns of genetic structure, genetic diversity, gene flow, and local adaptation in the stingless bee Melipona subnitida, a tropical pollinator of key biological and economic importance inhabiting one of the driest and hottest regions of South America. Our results reveal four genetic clusters across the species' full distribution range. All populations were found to be under a mutation-drift equilibrium, and genetic diversity was not influenced by the amount of reminiscent natural habitats. However, genetic relatedness was spatially autocorrelated and isolation by landscape resistance explained range-wide relatedness patterns better than isolation by geographic distance, contradicting earlier findings for stingless bees. Specifically, gene flow was enhanced by increased thermal stability, higher forest cover, lower elevations, and less corrugated terrains. Finally, we detected genomic signatures of adaptation to temperature, precipitation, and forest cover, spatially distributed in latitudinal and altitudinal patterns. Taken together, our findings shed important light on the life history of M. subnitida and highlight the role of regions with large thermal fluctuations, deforested areas, and mountain ranges as dispersal barriers. Conservation actions such as restricting long-distance colony transportation, preserving local adaptations, and improving the connectivity between highlands and lowlands are likely to assure future pollination services.

4.
J Hered ; 107(6): 527-36, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27288529

RESUMO

Acrocomia aculeata (Arecaceae), a palm endemic to South and Central America, is a potential oil crop. Knowledge of the mating system of this species is limited to its reproductive biology and to studies using molecular markers. The present study analyzed genetic diversity between its developmental stages and determined its prevailing mating system in order to support genetic conservation and breeding programs. We tested 9 microsatellite markers in 27 mother trees (adult plants) and 157 offspring (juvenile plants) from the southeastern region of Brazil. Heterozygosity levels differed between the 2 studied life stages, as indicated by the fixation index of adult and juvenile trees, suggesting that selection against homozygotes occurs during the plant life cycle. The mating system parameters analyzed indicate that A. aculeata is predominantly outcrossing (allogamous). However, its low levels of selfing suggest that there is individual variation with regard to self-incompatibility, which can be a survival strategy in isolated or fragmented habitats. Deviations in variance effective size were detected because of high mating rates among relatives and correlated matings. These findings indicate that the main source of inbreeding results from biparental inbreeding in the population and that the progenies are predominantly composed of full-sibs. The information provided by this study on the ecology and reproduction dynamics of A. aculeata should be useful to both breeding and genetic conservation programs, allowing the development of more precise mathematical models and the estimation of the appropriate number of mother trees for seed collection.


Assuntos
Arecaceae/genética , Cruzamento , Variação Genética , Algoritmos , Brasil , Frequência do Gene , Endogamia , Modelos Genéticos
5.
J Hered ; 106(1): 102-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25425677

RESUMO

The Acrocomia aculeata is one of the most promising plants for sustainable production of renewable energy. In order to understand patterns of the distribution of the allelic diversity of A. aculeata ex situ germplasm collection, the present study investigated the hypothesis that the genetic variability of the accessions may match their geographical origin. A genotypic analysis of 77 A. aculeata accessions was conducted with 6 simple sequence repeat markers. A high degree of molecular diversity among the accessions was found, with an average of 9 alleles per locus and a polymorphic information content with a mean of 0.76. A total of 4 clusters was identified by the Bayesian analysis of population structure. The highest subpopulation diversity was identified in Pop1, mainly formed by accessions from State of Mato Grosso do Sul. The populations Pop2A, Pop2B, and Pop2C, all from the State of Minas Gerais, showed high genetic variability as determined by a higher F st, and a wide genetic variance, which were identified within and among the population by analysis of molecular variance. Based on our results and on Vavilov's theory on crop origins, one possible diversity center for A. aculeata is proposed to be in a region in southeast Brazil.


Assuntos
Arecaceae/genética , Variação Genética , Teorema de Bayes , Brasil , Frequência do Gene , Genética Populacional , Genótipo , Geografia , Repetições de Microssatélites/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...