Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9348, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672423

RESUMO

Phosphorus (P) is a crucial structural component of living systems and central to modern bioenergetics. P cycles through terrestrial geochemical reservoirs via complex physical and chemical processes. Terrestrial life has altered these fluxes between reservoirs as it evolved, which is why it is of interest to explore planetary P flux evolution in the absence of biology. This is especially true, since environmental P availability affects life's ability to alter other geochemical cycles, which could then be an example of niche construction. Understanding how P reservoir transport affects environmental P availability helps parameterize how the evolution of P reservoirs influenced the emergence of life on Earth, and potentially other planetary bodies. Geochemical P fluxes likely change as planets evolve, and element cycling models that take those changes into account can provide insights on how P fluxes evolve abiotically. There is considerable uncertainty in many aspects of modern and historical global P cycling, including Earth's initial P endowment and distribution after core formation and how terrestrial P interactions between reservoirs and fluxes and their rates have evolved over time. We present here a dynamical box model for Earth's abiological P reservoir and flux evolution. This model suggests that in the absence of biology, long term planetary geochemical cycling on planets similar to Earth with respect to geodynamism tends to bring P to surface reservoirs, and biology, including human civilization, tends to move P to subductable marine reservoirs.


Assuntos
Planeta Terra , Fósforo , Evolução Planetária , Humanos , Planetas
2.
Astrobiology ; 18(7): 897-914, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29634320

RESUMO

Nitrogen is the major component of Earth's atmosphere and plays important roles in biochemistry. Biological systems have evolved a variety of mechanisms for fixing and recycling environmental nitrogen sources, which links them tightly with terrestrial nitrogen reservoirs. However, prior to the emergence of biology, all nitrogen cycling was abiological, and this cycling may have set the stage for the origin of life. It is of interest to understand how nitrogen cycling would proceed on terrestrial planets with comparable geodynamic activity to Earth, but on which life does not arise. We constructed a kinetic mass-flux model of nitrogen cycling in its various major chemical forms (e.g., N2, reduced (NHx) and oxidized (NOx) species) between major planetary reservoirs (the atmosphere, oceans, crust, and mantle) and included inputs from space. The total amount of nitrogen species that can be accommodated in each reservoir, and the ways in which fluxes and reservoir sizes may have changed over time in the absence of biology, are explored. Given a partition of volcanism between arc and hotspot types similar to the modern ones, our global nitrogen cycling model predicts a significant increase in oceanic nitrogen content over time, mostly as NHx, while atmospheric N2 content could be lower than today. The transport timescales between reservoirs are fast compared to the evolution of the environment; thus atmospheric composition is tightly linked to surface and interior processes. Key Words: Nitrogen cycle-Abiotic-Planetology-Astrobiology. Astrobiology 18, 897-914.


Assuntos
Planeta Terra , Exobiologia/métodos , Modelos Químicos , Atmosfera/química , Ciclo do Nitrogênio , Oceanos e Mares
3.
PLoS One ; 10(10): e0140663, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26480478

RESUMO

We propose a metric which can be used to compute the amount of heritable variation enabled by a given dynamical system. A distribution of selection pressures is used such that each pressure selects a particular fixed point via competitive exclusion in order to determine the corresponding distribution of potential fixed points in the population dynamics. This metric accurately detects the number of species present in artificially prepared test systems, and furthermore can correctly determine the number of heritable sets in clustered transition matrix models in which there are no clearly defined genomes. Finally, we apply our metric to the GARD model and show that it accurately reproduces prior measurements of the model's heritability.


Assuntos
Hereditariedade , Modelos Genéticos , Origem da Vida , Evolução Molecular , Seleção Genética
4.
Science ; 342(6159): 724-6, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24202170

RESUMO

Maps of crustal thickness derived from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission revealed more large impact basins on the nearside hemisphere of the Moon than on its farside. The enrichment in heat-producing elements and prolonged volcanic activity on the lunar nearside hemisphere indicate that the temperature of the nearside crust and upper mantle was hotter than that of the farside at the time of basin formation. Using the iSALE-2D hydrocode to model impact basin formation, we found that impacts on the hotter nearside would have formed basins with up to twice the diameter of similar impacts on the cooler farside hemisphere. The size distribution of lunar impact basins is thus not representative of the earliest inner solar system impact bombardment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...