Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; : e202400083, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38523404

RESUMO

We report the synthesis of core-shell Ni-Pt nanoparticles (NPs) with varying degrees of crystallographic facets and surface layers rich in Pt via a seed-mediated thermolytic approach. Mixtures of different surfactants used during synthesis resulted in preferential surface passivation, which in turn dictated the size, chemical composition, and geometric evolution of these PtNi NPs. Electrochemical investigations of these pristine core-shell Ni-Pt structures in the oxygen reduction reaction (ORR) show that their catalytic functionalities outperform the commercial Pt/C reference catalyst. The enhanced electrocatalytic ORR performances of these Pt-based PtNi NPs are correlated with the weakened oxygen binding strength or surface-adsorbed hydroxyl (OH) species on active Pt surface sites induced by the downshift of the d-band center as a result of compressive strain effects. Our studies offer a robust synthetic approach for the development of core-shell nanostructures for enhanced ORR catalysis.

2.
Small ; 20(10): e2302426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37907412

RESUMO

Tailoring nanoparticles' composition and morphology is of particular interest for improving their performance for catalysis. A challenge of this approach is that the nanoparticles' optimized initial structure often changes during use. Visualizing the three dimensional (3D) structural transformation in situ is therefore critical, but often prohibitively difficult experimentally. Although electron tomography provides opportunities for 3D imaging, restrictions in the tilt range of in situ holders together with electron dose considerations limit the possibilities for in situ electron tomography studies. Here, an in situ 3D imaging methodology is presented using single particle reconstruction (SPR) that allows 3D reconstruction of nanoparticles with controlled electron dose and without tilting the microscope stage. This in situ SPR methodology is employed to investigate the restructuring and elemental redistribution within a population of PtNi nanoparticles at elevated temperatures. The atomic structure of PtNi is further examined and a heat-induced transition is found from a disordered to an ordered phase. Changes in structure and elemental distribution are linked to a loss of catalytic activity in the oxygen reduction reaction. The in situ SPR methodology employed here can be extended to a wide range of in situ studies employing not only heating, but gaseous, aqueous, or electrochemical environments to reveal in-operando nanoparticle evolution in 3D.

3.
Nanomaterials (Basel) ; 11(7)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34361211

RESUMO

We report on an optimized, scalable solution-phase synthetic procedure for the fabrication of fine-tuned monodisperse nanostructures (Pt(NiCo), PtNi and PtCo). The influence of different solute metal precursors and surfactants on the morphological evolution of homogeneous alloy nanoparticles (NPs) has been investigated. Molybdenum hexacarbonyl (Mo(CO)6) was used as the reductant. We demonstrate that this solution-based strategy results in uniform-sized NPs, the morphology of which can be manipulated by appropriate selection of surfactants and solute metal precursors. Co-surfactants (oleylamine, OAm, and hexadecylamine, HDA) enabled the development of a variety of high-index faceted NP morphologies with varying degrees of curvatures while pure OAm selectively produced octahedral NP morphologies. This Mo(CO)6-based synthetic protocol offers new avenues for the fabrication of multi-structured alloy NPs as high-performance electrocatalysts.

4.
Nano Lett ; 21(9): 3989-3996, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33899489

RESUMO

We report a rapid solution-phase strategy to synthesize alloyed PtNi nanoparticles which demonstrate outstanding functionality for the oxygen reduction reaction (ORR). This one-pot coreduction colloidal synthesis results in a monodisperse population of single-crystal nanoparticles of rhombic dodecahedral morphology with Pt-enriched edges and compositions close to Pt1Ni2. We use nanoscale 3D compositional analysis to reveal for the first time that oleylamine (OAm)-aging of the rhombic dodecahedral Pt1Ni2 particles results in Ni leaching from surface facets, producing aged particles with concave faceting, an exceptionally high surface area, and a composition of Pt2Ni1. We show that the modified atomic nanostructures catalytically outperform the original PtNi rhombic dodecahedral particles by more than two-fold and also yield improved cycling durability. Their functionality for the ORR far exceeds commercially available Pt/C nanoparticle electrocatalysts, both in terms of mass-specific activities (up to a 25-fold increase) and intrinsic area-specific activities (up to a 27-fold increase).

5.
RSC Adv ; 10(49): 29268-29277, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521089

RESUMO

Complex faceted geometries and compositional anisotropy in alloy nanoparticles (NPs) can enhance catalytic performance. We report on the preparation of binary PtNi NPs via a co-thermolytic approach in which we optimize the synthesis variables, which results in significantly improved catalytic performance. We used scanning transmission electron microscopy to characterise the range of morphologies produced, which included spherical and concave cuboidal core-shell structures. Electrocatalytic activity was evaluated using a rotating disc electrode (1600 rpm) in 0.1 M HClO4; the electrocatalytic performance of these Ni@Pt NPs showed significant (∼11-fold) improvement compared to a commercial Pt/C catalyst. Extended cycling revealed that electrochemical surface area was retained by cuboidal PtNi NPs post 5000 electrochemical cycles (0.05-1.00 V, vs. SHE). This is attributed to the enclosure of Ni atoms by a thick Pt shell, thus limiting Ni dissolution from the alloy structures. The novel synthetic strategy presented here results in a high yield of Ni@Pt NPs which show excellent electro-catalytic activity and useful durability.

6.
Sci Total Environ ; 688: 1102-1111, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31726541

RESUMO

This paper presents the life cycle assessment (LCA) carried out on the manganese beneficiation and refining process. This cradle-to-gate analysis is carried out using SimaPro software version 8.5. The considered case is the manganese beneficiation and refining process, and the final product is 1 kg of refined manganese. The global average dataset is collected from the EcoInvent and AusLCI database, which are originated from literature source. The analysis methodologies considered in this study are the International Life Cycle Reference Data System (ILCD) method and Cumulative Energy Demand (CED) method. A comparative analysis is also presented which compared among ILCD, Australian Indicator, and Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI) methods to identify the best practice method for global analysis of mining processes. A detailed sensitivity analysis has been carried out considering different scenarios, to suggest possible solutions to reduce the environmental impacts associated with manganese beneficiation and refining processes. The analysis results reveal that particulate matter, climate change, categories of eutrophication, human toxicity (cancer and non-cancer effects), and acidification are some of the noteworthy impact categories. The analysis results also showed that coal consumption is significantly higher than other types of renewables and non-renewable energy consumption in manganese beneficiation and refining processes. The analysis results further reveal that using the chromium steel in manganese beneficiation process and ferromanganese consumption in the refining process has a significant effect over other materials involved in manganese beneficiation and refining operations. The obvious reason behind this result is ferromanganese utilization as an energy-intensive process, which in turn increases the environmental emissions. The analysis results also showed that, between the beneficiation and refining process, manganese refining has a much greater impact on the environment rather than the beneficiation process due to the fossil fuel and electricity consumption in refining operations.

7.
Nano Lett ; 19(2): 732-738, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30681878

RESUMO

The properties of nanoparticles are known to critically depend on their local chemistry but characterizing three-dimensional (3D) elemental segregation at the nanometer scale is highly challenging. Scanning transmission electron microscope (STEM) tomographic imaging is one of the few techniques able to measure local chemistry for inorganic nanoparticles but conventional methodologies often fail due to the high electron dose imparted. Here, we demonstrate realization of a new spectroscopic single particle reconstruction approach built on a method developed by structural biologists. We apply this technique to the imaging of PtNi nanocatalysts and find new evidence of a complex inhomogeneous alloying with a Pt-rich core, a Ni-rich hollow octahedral intermediate shell and a Pt-rich rhombic dodecahedral skeleton framework with less Pt at ⟨100⟩ vertices. The ability to gain evidence of local surface enrichment that varies with the crystallographic orientation of facets and vertices is expected to provide significant insight toward the development of nanoparticles for sensing, medical imaging, and catalysis.

8.
Nanomaterials (Basel) ; 8(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949875

RESUMO

Nanoalloys with anisotropic morphologies of branched and porous internal structures show great promise in many applications as high performance materials. Reported synthetic approaches for branched alloy nanostructures are, however, limited by the synthesis using a seed-growth process. Here, we demonstrate a conveniently fast and one-pot solution-phase thermal reduction strategy yielding nanoalloys of Pt with various solute feed ratios, exhibiting hyperbranched morphologies and good dispersity. When Pt was alloyed with transition metals (Ni, Co, Fe), we observed well-defined dendritic nanostructures in PtNi, PtCo and Pt(NiCo), but not in PtFe, Pt(FeNi) or Pt(FeCo) due to the steric hindrance of the trivalent Fe(acac)3 precursor used during synthesis. In the case of Pt-based nanoalloys containing Ni and Co, the dendritic morphological evolution observed was insensitive to large variations in solute concentration. The functionality of these nanoalloys towards the oxygen reduction reaction (ORR); however, was observed to be dependent on the composition, increasing with increasing solute content. Pt3(NiCo)2 exhibited superior catalytic activity, affording about a five- and 10-fold enhancement in area-specific and mass-specific catalytic activities, respectively, compared to the standard Pt/C nanocatalyst. This solution-based synthetic route offers a new approach for constructing dendritic Pt-based nanostructures with excellent product yield, monodispersity and high crystallinity.

9.
ACS Appl Mater Interfaces ; 10(11): 9468-9477, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29465987

RESUMO

This work, for the first time, reports visible-light active bare graphitic carbon nitride nanotubes (C3N4 NTs) for photocatalytic hydrogen generation, even in the absence of any cocatalyst. Upon uniform dispersion of the cocatalysts, Ag-Cu nanoparticles, on the well-ordered bare C3N4 NTs, they exhibit twice the H2 evolution rate of the bare C3N4 NTs. The improved activity is attributed to their unique tubular nanostructure, strong metal-support interaction, and efficient photoinduced electron-hole separation compared to their bare and monometallic counterparts, evidenced by complementary characterization techniques. This work reveals that the H2 production rates correlate well with the oxidation potentials of the sacrificial reagents used. Triethylamine (TEA) outperforms other sacrificial reagents, including triethanolamine (TEOA) and methanol. Mechanistic studies on the role of various sacrificial reagents in photocatalytic H2 generation demonstrate that irreversible photodegradation of TEA into diethylamine and acetaldehyde via monoelectronic oxidation contributes to the improved H2 yield. Similarly, TEOA is oxidized to diethanolamine and glycolaldehyde, whereas methanol is unable to quickly capture the photoinduced holes and remains intact due to the low oxidation potential.

10.
Nano Lett ; 17(5): 2858-2864, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28437117

RESUMO

Each single upconversion nanocrystal (UCNC) usually contains thousands of photon sensitizers and hundreds of photon activators to up-convert near-infrared photons into visible and ultraviolet emissions. Though in principle further increasing the sensitizers' concentration will enhance the absorption efficiency to produce brighter nanocrystals, typically 20% of Yb3+ ions has been used to avoid the so-called "concentration quenching" effect. Here we report that the concentration quenching effect does not limit the sensitizer concentration and NaYbF4 is the most bright host matrix. Surface quenching and the large size of NaYbF4 nanocrystals are the only factors limiting this optimal concentration. Therefore, we further designed sandwich nanostructures of NaYbF4 between a small template core to allow an epitaxial growth of the size-tunable NaYbF4 shell enclosed by an inert shell to minimize surface quenching. As a result, the suspension containing 25.2 nm sandwich structure UCNCs is 1.85 times brighter than the homogeneously doped ones, and the brightness of each single 25.2 nm heterogeneous UCNC is enhanced by nearly 3 times compared to the NaYF4: 20% Yb3+, 4% Tm3+ UCNCs in similar sizes. Particularly, the blue emission intensities of the UCNCs with the sandwich structure in the size of 13.6 and 25.2 nm are 1.36 times and 3.78 times higher than that of the monolithic UCNCs in the similar sizes. Maximizing the sensitizer concentration will accelerate the development of brighter and smaller UCNCs as more efficient biomolecule probes or photon energy converters.

11.
J Phys Chem Lett ; 7(16): 3252-8, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27490090

RESUMO

Optical biomedical imaging using luminescent nanoparticles as contrast agents prefers small size, as they can be used at high dosages and efficiently cleared from body. Reducing nanoparticle size is critical for the stability and specificity for the fluorescence nanoparticles probes for in vitro diagnostics and subcellular imaging. The development of smaller and brighter upconversion nanoparticles (UCNPs) is accordingly a goal for complex imaging in bioenvironments. At present, however, small UCNPs are reported to exhibit less emission intensity due to increased surface deactivation and decreased number of dopants. Here we show that smaller and more efficient UCNPs can be made by improving the interior crystal quality via controlling heating rate during synthesis. We further developed a unique quantitative method for optical characterizations on the single UCNPs with varied sizes and the corresponding shell passivated UCNPs, confirming that the internal crystal quality dominates the relative emission efficiency of the UCNPs.

12.
Sensors (Basel) ; 13(8): 10358-69, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23941910

RESUMO

The use of magnetic nanomaterials in biosensing applications is growing as a consequence of their remarkable properties; but controlling the composition and shape of metallic nanoalloys is problematic when more than one precursor is required for wet chemistry synthesis. We have developed a successful simultaneous reduction method for preparation of near-spherical platinum-based nanoalloys containing magnetic solutes. We avoided particular difficulties in preparing platinum nanoalloys containing Ni, Co and Fe by the identification of appropriate synthesis temperatures and chemistry. We used transmission electron microscopy (TEM) to show that our particles have a narrow size distribution, uniform size and morphology, and good crystallinity in the as-synthesized condition. Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) confirms the coexistence of Pt with the magnetic solute in a face-centered cubic (FCC) solid solution.


Assuntos
Ligas/química , Materiais Biocompatíveis/síntese química , Técnicas Biossensoriais/métodos , Nanopartículas de Magnetita/química , Nanopartículas Metálicas/química , Platina/química , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...