Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659888

RESUMO

Intrinsically photosensitive retinal ganglion cells (ipRGCs) play a crucial role in several physiological light responses. In this study we generate a new Opn4cre knock-in allele (Opn4cre(DSO)), in which cre is placed immediately downstream of the Opn4 start codon. This approach aims to faithfully reproduce endogenous Opn4 expression and improve compatibility with widely used reporters. We evaluated the efficacy and sensitivity of Opn4cre(DSO) for labeling in retina and brain, and provide an in-depth comparison with the extensively utilized Opn4cre(Saha) line. Through this characterization, Opn4cre(DSO) demonstrated higher specificity in labeling ipRGCs, with minimal recombination escape. Leveraging a combination of electrophysiological, molecular, and morphological analyses, we confirmed its sensitivity in detecting all ipRGC types (M1-M6). Using this new tool, we describe the topographical distributions of ipRGC types across the retinal landscape, uncovering distinct ventronasal biases for M5 and M6 types, setting them apart from their M1-M4 counterparts. In the brain, we find vastly different labeling patterns between lines, with Opn4cre(DSO) only labeling ipRGC axonal projections to their targets. The combination of off-target effects of Opn4cre(Saha) across the retina and brain, coupled with diminished efficiencies of both Cre lines when coupled to less sensitive reporters, underscores the need for careful consideration in experimental design and validation with any Opn4cre driver. Overall, the Opn4cre(DSO) mouse line represents an improved tool for studying ipRGC function and distribution, offering a means to selectively target these cells to study light-regulated behaviors and physiology.

2.
J Perinatol ; 43(Suppl 1): 49-54, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086967

RESUMO

OBJECTIVE: We designed and implemented a novel neonatal intensive care (NICU) lighting system to support the current understanding of daylight-coupled physiology. METHODS: We created a system that generates wavelengths corresponding to the known blue and violet activation spectra of non-visual opsins. These are known to mediate energy management and related physiologic activity. RESULTS: Light produced by the system spans the visible spectrum, including violet wavelengths that are blocked by modern glazing and not emitted by standard LED fixtures. System features include automated light and dark phases that mimic dawn/dusk. The system also matches length of day seasonality. Spectral composition can be varied to support translational research protocols. Implementation required a comprehensive strategy to inform bedside providers about the value and use of the lighting system. CONCLUSION: Full-spectrum lighting for the NICU is feasible and will inform the optimization of the NICU environment of care to support optimal neonatal growth and development.


Assuntos
Terapia Intensiva Neonatal , Iluminação , Recém-Nascido , Humanos
3.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662196

RESUMO

Photoreception, a form of sensory experience, is essential for normal development of the mammalian visual system. Detecting photons during development is a prerequisite for visual system function - from vision's first synapse at the cone pedicle and maturation of retinal vascular networks, to transcriptional establishment and maturation of cell types within the visual cortex. Consistent with this theme, we find that the lighting environment regulates developmental rod photoreceptor apoptosis via OPN4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). Using a combination of genetics, sensory environment manipulations, and computational approaches, we establish a molecular pathway in which light-dependent glutamate release from ipRGCs is detected via a transiently expressed kainate receptor (GRIK3) in immature rods localized to the inner retina. Communication between ipRGCs and nascent inner retinal rods appears to be mediated by unusual hybrid neurites projecting from ipRGCs that sense light before eye-opening. These structures, previously referred to as outer retinal dendrites (ORDs), span the ipRGC-immature rod distance over the first postnatal week and contain the machinery for sensory detection (melanopsin, OPN4) and axonal/anterograde neurotransmitter release (Synaptophysin, and VGLUT2). Histological and computational assessment of human mid-gestation development reveal conservation of several hallmarks of an ipRGC-to-immature rod pathway, including displaced immature rods, transient GRIK3 expression in the rod lineage, and the presence of ipRGCs with putative neurites projecting deep into the developing retina. Thus, this analysis defines a retinal retrograde signaling pathway that links the sensory environment to immature rods via ipRGC photoreceptors, allowing the visual system to adapt to distinct lighting environments priory to eye-opening.

4.
Am J Cardiol ; 206: 303-308, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722228

RESUMO

In a large screening program of asymptomatic middle-aged individuals, we sought to assess the degree of risk reclassification provided by comparing multiethnic study on subclinical atherosclerosis coronary artery calcium scoring (CACS) versus atherosclerotic cardiovascular disease (ASCVD) and Reynolds risk score (RRS) score. All 5,324 consecutive patients (aged 57 ± 8 years, 76% male) who underwent CACS screening at the Cleveland Clinic as part of a primary prevention executive health between March 16 and October 21 were included. The 10-year ASCVD, RRS, and multiethnic study on subclinical atherosclerosis CACS (MESA-CACS) risk scores were calculated and categorized as <1, 1 to 4.99, 5 to 9.99, and ≥10%. Compared with ASCVD, using MESA-CACS resulted in a downgraded risk in 1,667 subjects (31%), whereas 738 (14%) had an upgrade in risk (total of 45% reclassification). Similarly, compared with RRS, using MESA-CACS resulted in an upgraded risk in 797 (15%) and a downgrade in 1,380 (26%) subjects (total of 41% reclassification). However, by further dividing by the distribution of the coronary calcification, ASCVD overestimates the risk only for patients with coronary artery calcium (CAC) in 0 or 1 coronary artery only, whereas MESA-CACS overestimates if the CAC was noted in ≥2 arteries. Similarly, RRS only overestimates the risk for patients with 0 CAC, whereas it underestimates the risk for patients with any CAC. In conclusion, the use of MESA-CACS, along with CAC distribution in primary prevention clinics, results in differential and significant reclassification of traditional scores when calculating the 10-years coronary vascular disease risk. Overall, RRS underestimates and ASCVD overestimates the cardiovascular disease risk compared with MESA-CACS.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Doença da Artéria Coronariana , Calcificação Vascular , Pessoa de Meia-Idade , Humanos , Masculino , Feminino , Doença da Artéria Coronariana/epidemiologia , Cálcio , Vasos Coronários/diagnóstico por imagem , Medição de Risco/métodos , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/epidemiologia , Fatores de Risco , Prevenção Primária
5.
Curr Biol ; 33(18): 3821-3834.e5, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37572663

RESUMO

During central nervous system (CNS) development, a precisely patterned vasculature emerges to support CNS function. How neurons control angiogenesis is not well understood. Here, we show that the neuromodulator dopamine restricts vascular development in the retina via temporally limited production by an unexpected neuron subset. Our genetic and pharmacological experiments demonstrate that elevating dopamine levels inhibits tip-cell sprouting and vessel growth, whereas reducing dopamine production by all retina neurons increases growth. Dopamine production by canonical dopaminergic amacrine interneurons is dispensable for these events. Instead, we found that temporally restricted dopamine production by retinal ganglion cells (RGCs) modulates vascular development. RGCs produce dopamine precisely during angiogenic periods. Genetically limiting dopamine production by ganglion cells, but not amacrines, decreases angiogenesis. Conversely, elevating ganglion-cell-derived dopamine production inhibits early vessel growth. These vasculature outcomes occur downstream of vascular endothelial growth factor receptor (VEGFR) activation and Notch-Jagged1 signaling. Jagged1 is increased and subsequently inhibits Notch signaling when ganglion cell dopamine production is reduced. Our findings demonstrate that dopaminergic neural activity from a small neuron subset functions upstream of VEGFR to serve as developmental timing cue that regulates vessel growth.


Assuntos
Dopamina , Fator A de Crescimento do Endotélio Vascular , Dopamina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Retina , Células Ganglionares da Retina/metabolismo , Transdução de Sinais
6.
Res Sq ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37502905

RESUMO

Objective: We designed and implemented a novel neonatal intensive care (NICU) lighting system to support current understanding of sunlight-coupled physiology. Methods: We created a system that generates wavelengths corresponding to the known blue and violet activation spectra of non-visual opsins. These are known to mediate energy management and related physiologic activity. Results: Light produced by the system spans the visible spectrum, including violet wavelengths that are blocked by modern glazing and not emitted by standard LED fixtures. System features include automated light and dark phases that mimic dawn/dusk. The system also matches length of day seasonality. Spectral composition can be varied to support translational research protocols. Implementation required a comprehensive strategy to inform bedside providers about the value and use of the lighting system. Conclusion: Full-spectrum lighting for the NICU is feasible and will inform optimization of the NICU environment of care to support optimal neonatal growth and development.

7.
Mol Vis ; 29: 39-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37287644

RESUMO

Purpose: Myopia, or nearsightedness, is the most common form of refractive error and is increasing in prevalence. While significant efforts have been made to identify genetic variants that predispose individuals to myopia, these variants are believed to account for only a small portion of the myopia prevalence, leading to a feedback theory of emmetropization, which depends on the active perception of environmental visual cues. Consequently, there has been renewed interest in studying myopia in the context of light perception, beginning with the opsin family of G-protein coupled receptors (GPCRs). Refractive phenotypes have been characterized in every opsin signaling pathway studied, leaving only Opsin 3 (OPN3), the most widely expressed and blue-light sensing noncanonical opsin, to be investigated for function in the eye and refraction. Methods: Opn3 expression was assessed in various ocular tissues using an Opn3eGFP reporter. Weekly refractive development in Opn3 retinal and germline mutants from 3 to 9 weeks of age was measured using an infrared photorefractor and spectral domain optical coherence tomography (SD-OCT). Susceptibility to lens-induced myopia was then assessed using skull-mounted goggles with a -30 diopter experimental and a 0 diopter control lens. Mouse eye biometry was similarly tracked from 3 to 6 weeks. A myopia gene expression signature was assessed 24 h after lens induction for germline mutants to further assess myopia-induced changes. Results: Opn3 was found to be expressed in a subset of retinal ganglion cells and a limited number of choroidal cells. Based on an assessment of Opn3 mutants, the OPN3 germline, but not retina conditional Opn3 knockout, exhibits a refractive myopia phenotype, which manifests in decreased lens thickness, shallower aqueous compartment depth, and shorter axial length, atypical of traditional axial myopias. Despite the short axial length, Opn3 null eyes demonstrate normal axial elongation in response to myopia induction and mild changes in choroidal thinning and myopic shift, suggesting that susceptibility to lens-induced myopia is largely unchanged. Additionally, the Opn3 null retinal gene expression signature in response to induced myopia after 24 h is distinct, with opposing Ctgf, Cx43, and Egr1 polarity compared to controls. Conclusions: The data suggest that an OPN3 expression domain outside the retina can control lens shape and thus the refractive performance of the eye. Prior to this study, the role of Opn3 in the eye had not been investigated. This work adds OPN3 to the list of opsin family GPCRs that are implicated in emmetropization and myopia. Further, the work to exclude retinal OPN3 as the contributing domain in this refractive phenotype is unique and suggests a distinct mechanism when compared to other opsins.


Assuntos
Miopia , Erros de Refração , Animais , Camundongos , Miopia/genética , Refração Ocular , Retina , Opsinas/genética , Opsinas de Bastonetes
8.
Annu Rev Vis Sci ; 9: 245-267, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196422

RESUMO

We live on a planet that is bathed in daily and seasonal sunlight cycles. In this context, terrestrial life forms have evolved mechanisms that directly harness light energy (plants) or decode light information for adaptive advantage. In animals, the main light sensors are a family of G protein-coupled receptors called opsins. Opsin function is best described for the visual sense. However, most animals also use opsins for extraocular light sensing for seasonal behavior and camouflage. While it has long been believed that mammals do not have an extraocular light sensing capacity, recent evidence suggests otherwise. Notably, encephalopsin (OPN3) and neuropsin (OPN5) are both known to mediate extraocular light sensing in mice. Examples of this mediation include photoentrainment of circadian clocks in skin (by OPN5) and acute light-dependent regulation of metabolic pathways (by OPN3 and OPN5). This review summarizes current findings in the expanding field of extraocular photoreception and their relevance for human physiology.


Assuntos
Opsinas , Opsinas de Bastonetes , Camundongos , Humanos , Animais , Opsinas/fisiologia , Pele/metabolismo , Mamíferos , Proteínas de Membrana/metabolismo
9.
PLoS One ; 18(5): e0284824, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141220

RESUMO

Neurons in the hypothalamic preoptic area (POA) regulate multiple homeostatic processes, including thermoregulation and sleep, by sensing afferent input and modulating sympathetic nervous system output. The POA has an autonomous circadian clock and may also receive circadian signals indirectly from the suprachiasmatic nucleus. We have previously defined a subset of neurons in the POA termed QPLOT neurons that are identified by the expression of molecular markers (Qrfp, Ptger3, LepR, Opn5, Tacr3) that suggest receptivity to multiple stimuli. Because Ptger3, Opn5, and Tacr3 encode G-protein coupled receptors (GPCRs), we hypothesized that elucidating the G-protein signaling in these neurons is essential to understanding the interplay of inputs in the regulation of metabolism. Here, we describe how the stimulatory Gs-alpha subunit (Gnas) in QPLOT neurons regulates metabolism in mice. We analyzed Opn5cre; Gnasfl/fl mice using indirect calorimetry at ambient temperatures of 22°C (a historical standard), 10°C (a cold challenge), and 28°C (thermoneutrality) to assess the ability of QPLOT neurons to regulate metabolism. We observed a marked decrease in nocturnal locomotion of Opn5cre; Gnasfl/fl mice at both 28°C and 22°C, but no overall differences in energy expenditure, respiratory exchange, or food and water consumption. To analyze daily rhythmic patterns of metabolism, we assessed circadian parameters including amplitude, phase, and MESOR. Loss-of-function GNAS in QPLOT neurons resulted in several subtle rhythmic changes in multiple metabolic parameters. We observed that Opn5cre; Gnasfl/fl mice show a higher rhythm-adjusted mean energy expenditure at 22°C and 10°C, and an exaggerated respiratory exchange shift with temperature. At 28°C, Opn5cre; Gnasfl/fl mice have a significant delay in the phase of energy expenditure and respiratory exchange. Rhythmic analysis also showed limited increases in rhythm-adjusted means of food and water intake at 22°C and 28°C. Together, these data advance our understanding of Gαs-signaling in preoptic QPLOT neurons in regulating daily patterns of metabolism.


Assuntos
Regulação da Temperatura Corporal , Hipotálamo , Animais , Camundongos , Regulação da Temperatura Corporal/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético , Homeostase , Hipotálamo/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Opsinas/metabolismo , Temperatura
10.
Nat Commun ; 14(1): 1929, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024491

RESUMO

Activating non-inherited mutations in the guanine nucleotide-binding protein G(q) subunit alpha (GNAQ) gene family have been identified in childhood vascular tumors. Patients experience extensive disfigurement, chronic pain and severe complications including a potentially lethal coagulopathy termed Kasabach-Merritt phenomenon. Animal models for this class of vascular tumors do not exist. This has severely hindered the discovery of the molecular consequences of GNAQ mutations in the vasculature and, in turn, the preclinical development of effective targeted therapies. Here we report a mouse model expressing hyperactive mutant GNAQ in endothelial cells. Mutant mice develop vascular and coagulopathy phenotypes similar to those seen in patients. Mechanistically, by transcriptomic analysis we demonstrate increased mitogen activated protein kinase signaling in the mutant endothelial cells. Targeting of this pathway with Trametinib suppresses the tumor growth by reducing vascular cell proliferation and permeability. Trametinib also prevents the development of coagulopathy and improves mouse survival.


Assuntos
Melanoma , Neoplasias Uveais , Neoplasias Vasculares , Animais , Camundongos , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células Endoteliais/metabolismo , Apoptose , Melanoma/genética , Neoplasias Uveais/genética , Mutação , Modelos Animais de Doenças , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral
11.
Elife ; 122023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37067979

RESUMO

The mesolimbic dopamine system is an evolutionarily conserved set of brain circuits that play a role in attention, appetitive behavior, and reward processing. In this circuitry, ascending dopaminergic projections from the ventral midbrain innervate targets throughout the limbic forebrain, such as the ventral striatum/nucleus accumbens (NAc). Dopaminergic signaling in the NAc has been widely studied for its role in behavioral reinforcement, reward prediction error encoding, and motivational salience. Less well characterized is the role of dopaminergic neurotransmission in the response to surprising or alerting sensory events. To address this, we used the genetically encoded dopamine sensor dLight1 and fiber photometry to explore the ability of striatal dopamine release to encode the properties of salient sensory stimuli in mice, such as threatening looming discs. Here, we report that lateral NAc (LNAc) dopamine release encodes the rate and magnitude of environmental luminance changes rather than the visual stimulus threat level. This encoding is highly sensitive, as LNAc dopamine could be evoked by light intensities that were imperceptible to human experimenters. We also found that light-evoked dopamine responses are wavelength-dependent at low irradiances, independent of the circadian cycle, robust to previous exposure history, and involve multiple phototransduction pathways. Thus, we have further elaborated the mesolimbic dopamine system's ability to encode visual information in mice, which is likely relevant to a wide body of scientists employing light sources or optical methods in behavioral research involving rodents.


Assuntos
Dopamina , Estriado Ventral , Camundongos , Humanos , Animais , Dopamina/metabolismo , Núcleo Accumbens/fisiologia , Estriado Ventral/metabolismo , Motivação , Mesencéfalo/metabolismo , Área Tegmentar Ventral/fisiologia , Recompensa , Neurônios Dopaminérgicos/fisiologia
12.
Cell Mol Gastroenterol Hepatol ; 15(6): 1293-1310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36608902

RESUMO

BACKGROUND & AIMS: The intestinal stem cell niche is exquisitely sensitive to changes in diet, with high-fat diet, caloric restriction, and fasting resulting in altered crypt metabolism and intestinal stem cell function. Unlike cells on the villus, cells in the crypt are not immediately exposed to the dynamically changing contents of the lumen. We hypothesized that enteroendocrine cells (EECs), which sense environmental cues and in response release hormones and metabolites, are essential for relaying the luminal and nutritional status of the animal to cells deep in the crypt. METHODS: We used the tamoxifen-inducible VillinCreERT2 mouse model to deplete EECs (Neurog3fl/fl) from adult intestinal epithelium and we generated human intestinal organoids from wild-type and NEUROGENIN 3 (NEUROG3)-null human pluripotent stem cells. We used indirect calorimetry, 1H-Nuclear Magnetic Resonance (NMR) metabolomics, mitochondrial live imaging, and the Seahorse bioanalyzer (Agilent Technologies) to assess metabolism. Intestinal stem cell activity was measured by proliferation and enteroid-forming capacity. Transcriptional changes were assessed using 10x Genomics single-cell sequencing. RESULTS: Loss of EECs resulted in increased energy expenditure in mice, an abundance of active mitochondria, and a shift of crypt metabolism to fatty acid oxidation. Crypts from mouse and human intestinal organoids lacking EECs displayed increased intestinal stem cell activity and failed to activate phosphorylation of downstream target S6 kinase ribosomal protein, a marker for activity of the master metabolic regulator mammalian target of rapamycin (mTOR). These phenotypes were similar to those observed when control mice were deprived of nutrients. CONCLUSIONS: EECs are essential regulators of crypt metabolism. Depletion of EECs recapitulated a fasting metabolic phenotype despite normal levels of ingested nutrients. These data suggest that EECs are required to relay nutritional information to the stem cell niche and are essential regulators of intestinal metabolism.


Assuntos
Células-Tronco Pluripotentes , Nicho de Células-Tronco , Camundongos , Humanos , Animais , Células Enteroendócrinas/metabolismo , Intestinos , Nutrientes , Mamíferos
13.
J Patient Saf ; 19(1): 36-41, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35948315

RESUMO

OBJECTIVES: The COVID 19 pandemic placed unprecedented strain on healthcare systems and workers, likely also impacting patient safety and outcomes. This study aimed to understand how teamwork climate changed during that pandemic and how these changes affected safety culture and workforce well-being. METHODS: This cross-sectional observational study of 50,000 healthcare workers (HCWs) in 3 large U.S. health systems used scheduled culture survey results at 2 distinct time points: before and during the first year of the COVID 19 pandemic. The SCORE survey measured 9 culture domains: teamwork climate, safety climate, leadership engagement, improvement readiness, emotional exhaustion, emotional exhaustion climate, thriving, recovery, and work-life balance. RESULTS: Response rate before and during the pandemic was 75.45% and 74.79%, respectively. Overall, HCWs reporting favorable teamwork climate declined (45.6%-43.7%, P < 0.0001). At a facility level, 35% of facilities saw teamwork climate decline, while only 4% saw an increase in teamwork climate. Facilities with decreased teamwork climate had associated decreases in every culture domain, while facilities with improved teamwork climate maintained well-being domains and saw improvements in every other culture domain. CONCLUSIONS: Healthcare worker teamwork norms worsened during the COVID-19 pandemic. Teamwork climate trend was closely associated with other safety culture metrics. Speaking up, resolving conflicts, and interdisciplinary coordination of care were especially predictive. Facilities sustaining these behaviors were able to maintain other workplace norms and workforce well-being metrics despite a global health crisis. Proactive team training may provide substantial benefit to team performance and HCW well-being during stressful times.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Estudos Transversais , Pandemias , Gestão da Segurança , Liderança , Inquéritos e Questionários
14.
Cell Res ; 33(2): 89-90, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36195752
15.
Cell Rep ; 41(7): 111641, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384107

RESUMO

Long-term impacts of diet have been well studied; however, the immediate response of the intestinal epithelium to a change in nutrients remains poorly understood. We use physiological metrics and single-cell transcriptomics to interrogate the intestinal epithelial cell response to a high-fat diet (HFD). Within 1 day of HFD exposure, mice exhibit altered whole-body physiology and increased intestinal epithelial proliferation. Single-cell transcriptional analysis on day 1 reveals a cell-stress response in intestinal crypts and a shift toward fatty acid metabolism. By 3 days of HFD, computational trajectory analysis suggests an emergence of progenitors, with a transcriptional profile shifting from secretory populations toward enterocytes. Furthermore, enterocytes upregulate lipid absorption genes and show increased lipid absorption in vivo over 7 days of HFD. These findings demonstrate the rapid intestinal epithelial response to a dietary change and help illustrate the essential ability of animals to adapt to shifting nutritional environments.


Assuntos
Dieta Hiperlipídica , Mucosa Intestinal , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Adaptação Fisiológica , Lipídeos
16.
Toxicol Pathol ; 50(7): 836-857, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36165586

RESUMO

The 2022 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri," was held in Austin, Texas at the Society of Toxicologic Pathology's 40th annual meeting during a half-day session on Sunday, June 19. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks along with select images that were used by the audience for voting and discussion. Various lesions and topics covered during the symposium included induced and spontaneous neoplastic and nonneoplastic lesions in the mouse lung, spontaneous lesions in the reproductive tract of a female cynomolgus macaque, induced vascular lesions in a mouse asthma model and interesting case studies in a rhesus macaque, dog and genetically engineered mouse model.


Assuntos
Toxicologia , Camundongos , Feminino , Animais , Cães , Macaca mulatta , Macaca fascicularis
17.
Front Physiol ; 13: 934591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35957988

RESUMO

Mammals maintain their internal body temperature within a physiologically optimal range. This involves the regulation of core body temperature in response to changing environmental temperatures and a natural circadian oscillation of internal temperatures. The preoptic area (POA) of the hypothalamus coordinates body temperature by responding to both external temperature cues and internal brain temperature. Here we describe an autonomous circadian clock system in the murine ventromedial POA (VMPO) in close proximity to cells which express the atypical violet-light sensitive opsin, Opn5. We analyzed the light-sensitivity and thermal-sensitivity of the VMPO circadian clocks ex vivo. The phase of the VMPO circadian oscillations was not influenced by light. However, the VMPO clocks were reset by temperature changes within the physiological internal temperature range. This thermal-sensitivity of the VMPO circadian clock did not require functional Opn5 expression or a functional circadian clock within the Opn5-expressing cells. The presence of temperature-sensitive circadian clocks in the VMPO provides an advancement in the understanding of mechanisms involved in the dynamic regulation of core body temperature.

18.
eNeuro ; 9(5)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36041828

RESUMO

Opsin-3 (Opn3, encephalopsin) was the first nonvisual opsin gene discovered in mammals. Since then, several Opn3 functions have been described, and in two cases (adipose tissue, smooth muscle) light sensing activity is implicated. In addition to peripheral tissues, Opn3 is robustly expressed within the central nervous system, for which it derives its name. Despite this expression, no studies have investigated developmental or adult CNS consequences of Opn3 loss-of-function. Here, the behavioral consequences of mice deficient in Opn3 were investigated. Opn3-deficient mice perform comparably to wild-type mice in measures of motor coordination, socialization, anxiety-like behavior, and various aspects of learning and memory. However, Opn3-deficient mice have an attenuated acoustic startle reflex (ASR) relative to littermates. This deficit is not because of changes in hearing sensitivity, although Opn3 was shown to be expressed in auditory and vestibular structures, including cochlear outer hair cells. Interestingly, the ASR was not acutely light-dependent and did not vary between daytime and nighttime trials, despite known functions of Opn3 in photoreception and circadian gene amplitude. Together, these results demonstrate the first role of Opn3 on behavior, although the role of this opsin in the CNS remains largely elusive.


Assuntos
Reflexo de Sobressalto , Opsinas de Bastonetes , Estimulação Acústica , Animais , Mamíferos/metabolismo , Camundongos , Opsinas , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo
19.
Commun Biol ; 5(1): 792, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933488

RESUMO

Circadian clocks in the mammalian retina regulate a diverse range of retinal functions that allow the retina to adapt to the light-dark cycle. Emerging evidence suggests a link between the circadian clock and retinopathies though the causality has not been established. Here we report that clock genes are expressed in the mouse embryonic retina, and the embryonic retina requires light cues to maintain robust circadian expression of the core clock gene, Bmal1. Deletion of Bmal1 and Per2 from the retinal neurons results in retinal angiogenic defects similar to when animals are maintained under constant light conditions. Using two different models to assess pathological neovascularization, we show that neuronal Bmal1 deletion reduces neovascularization with reduced vascular leakage, suggesting that a dysregulated circadian clock primarily drives neovascularization. Chromatin immunoprecipitation sequencing analysis suggests that semaphorin signaling is the dominant pathway regulated by Bmal1. Our data indicate that therapeutic silencing of the retinal clock could be a common approach for the treatment of certain retinopathies like diabetic retinopathy and retinopathy of prematurity.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Mamíferos , Camundongos , Neovascularização Patológica/metabolismo , Fotoperíodo , Retina/metabolismo
20.
Int J Radiat Oncol Biol Phys ; 113(3): 661-674, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35361520

RESUMO

PURPOSE: Cancer is a severe delayed effect of acute radiation exposure. Total-body irradiation has been associated with an increased risk of solid cancer and leukemia in Japanese atomic bomb survivors, and secondary malignancies, such as sarcoma, are a serious consequence of cancer radiation therapy. The radiation late effects cohort (RLEC) of rhesus macaques (Macaca mulatta) is a unique resource of more than 200 animals for studying the long-term consequences of total-body irradiation in an animal model that closely resembles humans at the genetic and physiologic levels. METHODS AND MATERIALS: Using clinical records, clinical imaging, histopathology, and immunohistochemistry, this retrospective study characterized the incidence of neoplasia in the RLEC. RESULTS: Since 2007, 61 neoplasms in 44 of 239 irradiated animals were documented (18.4% of the irradiated population). Only 1 neoplasm was diagnosed among the 51 nonirradiated controls of the RLEC (2.0%). The most common malignancies in the RLEC were sarcomas (38.3% of diagnoses), which are rare neoplasms in nonirradiated macaques. The most common sarcomas included malignant nerve sheath tumors and malignant glomus tumors. Carcinomas were less common (19.7% of diagnoses), and consisted primarily of renal cell and hepatocellular carcinomas. Neoplasia occurred in most major body systems, with the skin and subcutis being the most common site (40%). RNA analysis showed similarities in transcriptional profiles between RLEC and human malignant nerve sheath tumors. CONCLUSIONS: This study indicates that total-body irradiation is associated with an increased incidence of neoplasia years following irradiation, at more than double the incidence described in aging, nonirradiated animals, and promotes tumor histotypes that are rarely observed in nonirradiated, aging rhesus macaques.


Assuntos
Neoplasias de Bainha Neural , Lesões por Radiação , Sarcoma , Animais , Humanos , Incidência , Macaca mulatta , Estudos Retrospectivos , Sarcoma/epidemiologia , Sarcoma/etiologia , Sarcoma/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...