Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 259: 121750, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38851115

RESUMO

Phosphorus (P) discharge from agricultural and urban drainage is known for causing downstream eutrophication worldwide. Agricultural best management practices that are designed to reduce P load out of farms target different P species from various sources such as fertilizers leaching and farm soil and canal sediment erosion, however, few studies have assessed the impact of floating aquatic vegetation (FAV) on canal sediment and farm drainage water quality. This study evaluated the impact of FAVs on canal sediment properties and P water quality in drainage canals in the Everglades Agricultural Area in south Florida, USA. Non-parametric statistical methods, correlation analysis, trend analysis and principal component analysis (PCA) were used to determine the relationship between FAV coverage with sediment properties and P water quality parameters. Results showed that FAV coverage was correlated with the highly recalcitrant and most stable form of P in the sediment layer (Residual P Pool). FAV coverage also correlated with the dissolved organic P (DOP) which was the smallest P pool (7 %) of total P concentration in drainage water, therefore FAV coverage had no correlation with farm P load. The trend analysis showed no trend in farm P loads, despite a decline in FAV coverage at farm canals over an 8-year period. Phosphorus content in the sediment surface layer was strongly associated with farm P load and had a significant correlation with particulate P (PP) and soluble reactive P (SRP) which constituted 47 % and 46 % of the total P concentration in the drainage water, respectively. Equilibrium P concentration assays also showed the potential to release SRP from the sediment layer. The P budget established for this study reveals that sediment stores the largest P mass (333 kg P), while FAVs store the smallest P mass (8 kg P) in a farm canal, highlighting the significant contribution of canal sediment to farm P discharges. Further research is required to evaluate the impact of sediment removal and canal maintenance practices that help reduce farm P discharges.


Assuntos
Agricultura , Sedimentos Geológicos , Fósforo , Fósforo/análise , Florida , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
J Vis Exp ; (129)2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29155744

RESUMO

The purpose of this study is to describe the methods used to capture flow-weighted water and suspended particulates from farm canals during drainage discharge events. Farm canals can be enriched by nutrients such as phosphorus (P) that are susceptible to transport. Phosphorus in the form of suspended particulates can significantly contribute to the overall P loads in drainage water. A settling tank experiment was conducted to capture suspended particulates during discrete drainage events. Farm canal discharge water was collected in a series of two 200 L settling tanks over the entire duration of the drainage event, so as to represent a composite subsample of the water being discharged. Imhoff settling cones are ultimately used to settle out the suspended particulates. This is achieved by siphoning water from the settling tanks via the cones. The particulates are then collected for physico-chemical analyses.


Assuntos
Agricultura/métodos , Drenagem/métodos , Monitoramento Ambiental/métodos , Material Particulado/química , Poluentes Químicos da Água/química , Fósforo/química , Suspensões/química , Movimentos da Água
3.
J Environ Qual ; 39(5): 1751-61, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21043280

RESUMO

Water flow and P dynamics in a low-relief landscape manipulated by extensive canal and ditch drainage systems were modeled utilizing an ontology-based simulation model. In the model, soil water flux and processes between three soil inorganic P pools (labile, active, and stable) and organic P are represented as database objects. And user-defined relationships among objects are used to automatically generate computer code (Java) for running the simulation of discharge and P loads. Our objectives were to develop ontology-based descriptions of soil P dynamics within sugarcane- (Saccharum officinarum L.) grown farm basins of the Everglades Agricultural Area (EAA) and to calibrate and validate such processes with water quality monitoring data collected at one farm basin (1244 ha). In the calibration phase (water year [WY] 99-00), observed discharge totaled 11,114 m3 ha(-1) and dissolved P 0.23 kg P ha(-1); and in the validation phase (WY 02-03), discharge was 10,397 m3 ha(-1) and dissolved P 0.11 kg P ha(-). During WY 99-00 the root mean square error (RMSE) for monthly discharge was 188 m3 ha(-1) and for monthly dissolved P 0.0077 kg P ha(-1); whereas during WY 02-03 the RMSE for monthly discharge was 195 m3 ha(-1) and monthly dissolved P 0.0022 kg P ha(-1). These results were confirmed by Nash-Sutcliffe Coefficient of 0.69 (calibration) and 0.81 (validation) comparing measured and simulated P loads. The good model performance suggests that our model has promise to simulate P dynamics, which may be useful as a management tool to reduce P loads in other similar low-relief areas.


Assuntos
Fósforo/análise , Saccharum/química , Florida
4.
J Environ Qual ; 38(4): 1683-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19549945

RESUMO

A mandatory best management practices (BMP) program was implemented in the Everglades Agricultural Area (EAA) farms basin-wide in 1995 as required by the Everglades Forever Act to reduce P loads in drainage water reaching the Everglades ecosystem. All farms in the EAA basin implement similar BMPs, and basin wide P load reductions have exceeded the 25% reduction required by law; however, differences remain in water quality between subbasins. Our objective was to determine long-term trends in P loads in discharge water in the EAA after implementing BMPs for 7 to10 yr and to explore reasons for differences in the performance of the subbasins. Two monitoring datasets were used, one from 10 research farms and the second from the EAA basin inflow and outflow locations. Mann-Kendall trend analysis was used to determine the degree of change in water quality trends. A decreasing trend in P loads was observed in general on sugarcane (Saccharum officinarum L.) farms, while mixed crop farms showed either decreasing or insignificant trends. The insignificant trends are probably related to management practices of mixed crop systems. Decreasing trends in P loads were observed in the outflow of the EAA basin, S5A, and S8 subbasins from 1992 to 2002. Inflow water from Lake Okeechobee had increasing P concentration from 1992 to 2006 with the highest trend in the east side of the lake. This analysis indicated there may be other factors impacting the success of BMPs in individual farms including cropping rotations and flooding of organic soils. Elevated P concentrations in Lake Okeechobee water used for irrigation may pose a future risk to degrade water quality on farms in the EAA, especially in the S5A subbasin.


Assuntos
Conservação dos Recursos Naturais , Água , Produtos Agrícolas , Florida
5.
J Environ Qual ; 35(1): 141-50, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16391285

RESUMO

Specific conductance in farm canals of the Everglades Agricultural Area (EAA) in south Florida is an important water quality parameter that was categorized as a parameter of concern according to an observed frequency of >5% excursions over the Class III water quality criterion and needed to be addressed as a part of the Everglades Regulatory Program. This study was conducted to evaluate specific conductance in farm canals of the EAA. Specific conductance was monitored at 10 representative farms (a total of 12 pump stations) in the EAA using multi-parameter water quality data loggers, for periods ranging from 24 to 83 mo. Cation and anion concentrations were also determined. Nonparametric Mann-Kendall trend analyses and Sen's slope analysis of specific conductance were conducted to determine specific conductance trends. Mean specific conductance ranged from 0.74 to 1.68 dS m(-1) and only 2 of the 10 farms were above the State Class III water quality criterion of 1.275 dS m(-1). Statistically significant downward trends were observed at 3 of the 10 farms. Determination of ion compositions in grab samples at 8 of the 10 farms indicated that the major ions contributing to the increase in specific conductance in the EAA were Cl-, HCO3-, and Na+. Mean Na/Cl ratios in most of the EAA canals ranged from 0.57 to 0.78, whereas those of SO4/Cl ranged from 0.46 to 0.98. Investigation of historical data and literature indicates that elevated specific conductance in parts of the EAA is a natural phenomenon due to entrapment of connate seawater in the Everglades formation. Sulfur contributes minor increases in specific conductance in the EAA with probable sources from organic soil mineralization, ground water, Lake Okeechobee, and S fertilizers.


Assuntos
Agricultura , Condutividade Elétrica , Água/química , Florida , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...