Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6207, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707113

RESUMO

Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), produced by cyclic GMP-AMP synthase (cGAS), stimulates the production of type I interferons (IFN). Here we show that cGAMP activates DNA damage response (DDR) signaling independently of its canonical IFN pathways. Loss of cGAS dampens DDR signaling induced by genotoxic insults. Mechanistically, cGAS activates DDR in a STING-TBK1-dependent manner, wherein TBK1 stimulates the autophosphorylation of the DDR kinase ATM, with the consequent activation of the CHK2-p53-p21 signal transduction pathway and the induction of G1 cell cycle arrest. Despite its stimulatory activity on ATM, cGAMP suppresses homology-directed repair (HDR) through the inhibition of polyADP-ribosylation (PARylation), in which cGAMP reduces cellular levels of NAD+; meanwhile, restoring NAD+ levels abrogates cGAMP-mediated suppression of PARylation and HDR. Finally, we show that cGAMP also activates DDR signaling in invertebrate species lacking IFN (Crassostrea virginica and Nematostella vectensis), suggesting that the genome surveillance mechanism of cGAS predates metazoan interferon-based immunity.


Assuntos
Dano ao DNA , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Imunidade Inata , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/metabolismo , Fosforilação , Poli ADP Ribosilação , Proteínas Serina-Treonina Quinases/metabolismo , Reparo de DNA por Recombinação , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo
2.
Genetica ; 146(2): 171-178, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29397499

RESUMO

The rate of genomic recombination displays evolutionary plasticity and can even vary in response to environmental factors. The western honey bee (Apis mellifera L.) has an extremely high genomic recombination rate but the mechanistic basis for this genome-wide upregulation is not understood. Based on the hypothesis that meiotic recombination and DNA damage repair share common mechanisms in honey bees as in other organisms, we predicted that oxidative stress leads to an increase in recombination rate in honey bees. To test this prediction, we subjected honey bee queens to oxidative stress by paraquat injection and measured the rates of genomic recombination in select genome intervals of offspring produced before and after injection. The evaluation of 26 genome intervals in a total of over 1750 offspring of 11 queens by microsatellite genotyping revealed several significant effects but no overall evidence for a mechanistic link between oxidative stress and increased recombination was found. The results weaken the notion that DNA repair enzymes have a regulatory function in the high rate of meiotic recombination of honey bees, but they do not provide evidence against functional overlap between meiotic recombination and DNA damage repair in honey bees and more mechanistic studies are needed.


Assuntos
Abelhas/genética , Estresse Oxidativo , Recombinação Genética , Animais , Abelhas/efeitos dos fármacos , Feminino , Genoma de Inseto , Paraquat/toxicidade , Recombinação Genética/efeitos dos fármacos
3.
PLoS One ; 8(5): e65303, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724137

RESUMO

Recent studies have identified links between phospholipid composition and altered cellular functions in animal models of obesity, but the involvement of phospholipid biosynthesis genes in human obesity are not well understood. We analyzed the transcript of four phospholipid biosynthesis genes in adipose and muscle from 170 subjects. We examined publicly available genome-wide association data from the GIANT and MAGIC cohorts to investigate the association of SNPs in these genes with obesity and glucose homeostasis traits, respectively. Trait-associated SNPs were genotyped to evaluate their roles in regulating expression in adipose. In adipose tissue, expression of PEMT, PCYT1A, and PTDSS2 were positively correlated and PCYT2 was negatively correlated with percent fat mass and body mass index (BMI). Among the polymorphisms in these genes, SNP rs4646404 in PEMT showed the strongest association (p = 3.07E-06) with waist-to-hip ratio (WHR) adjusted for BMI. The WHR-associated intronic SNP rs4646343 in the PEMT gene showed the strongest association with its expression in adipose. Allele "C" of this SNP was associated with higher WHR (p = 2.47E-05) and with higher expression (p = 4.10E-04). Our study shows that the expression of PEMT gene is high in obese insulin-resistant subjects. Intronic cis-regulatory polymorphisms may increase the genetic risk of obesity by modulating PEMT expression.


Assuntos
Vias Biossintéticas/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Obesidade/genética , Fosfolipídeos/biossíntese , Polimorfismo de Nucleotídeo Único/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adiposidade/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/metabolismo , Fosfatidiletanolamina N-Metiltransferase/genética , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Característica Quantitativa Herdável , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Cintura-Quadril , Adulto Jovem
4.
PLoS One ; 8(2): e56193, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460794

RESUMO

Acetyl coenzyme A carboxylase B gene (ACACB) single nucleotide polymorphism (SNP) rs2268388 is reproducibly associated with type 2 diabetes (T2DM)-associated nephropathy (DN). ACACB knock-out mice are also protected from obesity. This study assessed relationships between rs2268388, body mass index (BMI) and gene expression in multiple populations, with and without T2DM. Among subjects without T2DM, rs2268388 DN risk allele (T) associated with higher BMI in Pima Indian children (n = 2021; p-additive = 0.029) and African Americans (AAs) (n = 177; p-additive = 0.05), with a trend in European Americans (EAs) (n = 512; p-additive = 0.09), but not Germans (n = 858; p-additive = 0.765). Association with BMI was seen in a meta-analysis including all non-T2DM subjects (n = 3568; p-additive = 0.02). Among subjects with T2DM, rs2268388 was not associated with BMI in Japanese (n = 2912) or EAs (n = 1149); however, the T allele associated with higher BMI in the subset with BMI≥30 kg/m(2) (n = 568 EAs; p-additive = 0.049, n = 196 Japanese; p-additive = 0.049). Association with BMI was strengthened in a T2DM meta-analysis that included an additional 756 AAs (p-additive = 0.080) and 48 Hong Kong Chinese (p-additive = 0.81) with BMI≥30 kg/m(2) (n = 1575; p-additive = 0.0033). The effect of rs2268388 on gene expression revealed that the T risk allele associated with higher ACACB messenger levels in adipose tissue (41 EAs and 20 AAs with BMI>30 kg/m(2); p-additive = 0.018) and ACACB protein levels in the liver tissue (mixed model p-additive = 0.03, in 25 EA bariatric surgery patients with BMI>30 kg/m(2) for 75 exams). The T allele also associated with higher hepatic triglyceride levels. These data support a role for ACACB in obesity and potential roles for altered lipid metabolism in susceptibility to DN.


Assuntos
Acetil-CoA Carboxilase/genética , Índice de Massa Corporal , Nefropatias Diabéticas/enzimologia , Regulação Enzimológica da Expressão Gênica , Predisposição Genética para Doença , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , Acetil-CoA Carboxilase/metabolismo , Tecido Adiposo/enzimologia , Adolescente , Adulto , Negro ou Afro-Americano/genética , Idoso , Animais , Demografia , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/genética , Feminino , Estudos de Associação Genética , Humanos , Indígenas Norte-Americanos/genética , Fígado/enzimologia , Estudos Longitudinais , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Triglicerídeos/metabolismo
5.
J Hum Genet ; 57(1): 57-61, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22113416

RESUMO

Prior type 2 diabetes (T2D) genome-wide association studies (GWASs) have generated a list of well-replicated susceptibility loci in populations of European and Asian ancestry. To validate the trans-ethnic contribution of the single-nucleotide polymorphisms (SNPs) involved in these GWASs, we performed a family-based association analysis of 32 selected GWAS SNPs in a cohort of 1496 African-American (AA) subjects from the Genetics of NIDDM (GENNID) study. Functional roles of these SNPs were evaluated by screening cis-eQTLs in transformed lymphoblast cell lines available for a sub-group of Genetics of NIDDM (GENNID) families from Arkansas. Only three of the 32 GWAS-derived SNPs showed nominally significant association with T2D in our AA cohort. Among the replicated SNPs rs864745 in JAZF1 and rs10490072 in BCL11A gene (P=0.006 and 0.03, respectively, after adjustment for body mass index) were within the 1-lod drop support interval of T2D linkage peaks reported in these families. Genotyping of 19 tag SNPs in these two loci revealed no further common SNPs or haplotypes that may be a stronger predictor of T2D susceptibility than the index SNPs. Six T2D GWAS SNPs (rs6698181, rs9472138, rs730497, rs10811661, rs11037909 and rs1153188) were associated with nearby transcript expression in transformed lymphoblast cell lines of GENNID AA subjects. Thus, our study indicates a nominal role for JAZF1 and BCL11A variants in T2D susceptibility in AAs and suggested little overlap in known susceptibility to T2D between European- and African-derived populations when considering GWAS SNPs alone.


Assuntos
Negro ou Afro-Americano/genética , Proteínas de Transporte/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Transporte/metabolismo , Proteínas Correpressoras , Proteínas de Ligação a DNA , Família , Regulação da Expressão Gênica , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras
6.
PLoS One ; 6(8): e23860, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21887335

RESUMO

BACKGROUND: Acetyl Coenzyme A carboxylase ß (ACACB) is the rate-limiting enzyme in fatty acid oxidation, and continuous fatty acid oxidation in Acacb knock-out mice increases insulin sensitivity. Systematic human studies have not been performed to evaluate whether ACACB variants regulate gene expression and insulin sensitivity in skeletal muscle and adipose tissues. We sought to determine whether ACACB transcribed variants were associated with ACACB gene expression and insulin sensitivity in non-diabetic African American (AA) and European American (EA) adults. METHODS: ACACB transcribed single nucleotide polymorphisms (SNPs) were genotyped in 105 EAs and 46 AAs whose body mass index (BMI), lipid profiles and ACACB gene expression in subcutaneous adipose and skeletal muscle had been measured. Allelic expression imbalance (AEI) was assessed in lymphoblast cell lines from heterozygous subjects in an additional EA sample (n = 95). Selected SNPs were further examined for association with insulin sensitivity in a cohort of 417 EAs and 153 AAs. RESULTS: ACACB transcribed SNP rs2075260 (A/G) was associated with adipose ACACB messenger RNA expression in EAs and AAs (p = 3.8×10(-5), dominant model in meta-analysis, Stouffer method), with the (A) allele representing lower gene expression in adipose and higher insulin sensitivity in EAs (p = 0.04). In EAs, adipose ACACB expression was negatively associated with age and sex-adjusted BMI (r = -0.35, p = 0.0002). CONCLUSIONS: Common variants within the ACACB locus appear to regulate adipose gene expression in humans. Body fat (represented by BMI) may further regulate adipose ACACB gene expression in the EA population.


Assuntos
Acetil-CoA Carboxilase/genética , Metabolismo/genética , Polimorfismo de Nucleotídeo Único , Tecido Adiposo/metabolismo , Adulto , População Negra/genética , Expressão Gênica , Genótipo , Humanos , Resistência à Insulina , Pessoa de Meia-Idade , Músculo Esquelético , População Branca/genética
7.
J Clin Endocrinol Metab ; 96(8): E1308-13, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21593104

RESUMO

CONTEXT: Obesity is a complex disease that involves both genetic and environmental perturbations to gene networks in adipose tissue and is proposed as a trigger for metabolic sequelae. OBJECTIVE: We hypothesized that expression of adipose tissue transcripts in gene networks for adaptive response would correlate with the percent fat mass (PFAT) in healthy nondiabetic subjects to maintain metabolic equilibrium and would overlap with genes modulated in response to elevated fatty acid. DESIGN, SETTINGS, AND PATIENTS: Genome-wide transcript profiles were determined in sc adipose tissue of 136 nondiabetics and in palmitate-induced cells. Genotype information and gene expression data in nondiabetic subjects were integrated to characterize the function of 41 obesity-associated polymorphisms. RESULTS: Genes involved in inflammation-immune response, endoplasmic reticulum stress, and cell-extracellular matrix interactions were significantly correlated with PFAT. The NRF2 (nuclear factor erythroid 2-related factor-2)-mediated oxidative stress response pathway was strongly enriched among genes correlated with PFAT in adipose and also emerged as the most enriched pathway among genes differentially expressed by palmitate in vitro. Thioredoxin reductase-1 (TXNRD1) was the most strongly correlated gene (ρ = 0.65). Genes coregulated with TXNRD1 expression indicated a significant interaction network of genes involved in thioredoxin-mediated oxidative stress defense mechanisms and angiogenesis. Pro- and antiangiogenic factors were negatively and positively correlated, respectively, with obesity. Eight obesity genome-wide association study single-nucleotide polymorphisms (SNP) were associated with expression of 10 local transcripts. SNP rs6861681 was the strongest cis-eQTL (expression quantitative trait loci) for CPEB4 (P = 3.02 × 10⁻9). CONCLUSIONS: Our study suggests a novel interaction of up-regulated TXN-TXNRD1 system-mediated oxidative stress defense mechanisms and down-regulated angiogenesis pathways as an adaptive response in obese nondiabetic subjects. A subset of obesity-associated SNP regulated expression of transcripts as cis-eQTL.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Neovascularização Fisiológica/genética , Obesidade/genética , Estresse Oxidativo/genética , Tiorredoxina Redutase 1/genética , Tecido Adiposo/fisiologia , Adulto , Regulação para Baixo/genética , Genômica/métodos , Humanos , Pessoa de Meia-Idade , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Gordura Subcutânea/irrigação sanguínea , Gordura Subcutânea/fisiologia , Tiorredoxina Redutase 1/metabolismo , Regulação para Cima/genética , Adulto Jovem
8.
J Clin Endocrinol Metab ; 96(2): E394-403, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21084393

RESUMO

CONTEXT: Genome-wide association scans (GWAS) have identified novel single nucleotide polymorphisms (SNPs) that increase T2D susceptibility and indicated the role of nearby genes in T2D pathogenesis. OBJECTIVE: We hypothesized that T2D-associated SNPs act as cis-regulators of nearby genes in human tissues and that expression of these transcripts may correlate with metabolic traits, including insulin sensitivity (S(I)). DESIGN, SETTINGS, AND PATIENTS: Association of SNPs with the expression of their nearest transcripts was tested in adipose and muscle from 168 healthy individuals who spanned a broad range of S(I) and body mass index (BMI) and in transformed lymphocytes (TLs). We tested correlations between the expression of these transcripts in adipose and muscle with metabolic traits. Utilizing allelic expression imbalance (AEI) analysis we examined the presence of other cis-regulators for those transcripts in TLs. RESULTS: SNP rs9472138 was significantly (P = 0.037) associated with the expression of VEGFA in TLs while rs6698181 was detected as a cis-regulator for the PKN2 in muscle (P = 0.00027) and adipose (P = 0.018). Significant association was also observed for rs17036101 (P = 0.001) with expression of SYN2 in adipose of Caucasians. Among 19 GWAS-implicated transcripts, expression of VEGFA in adipose was correlated with BMI (r = -0.305) and S(I) (r = 0.230). Although only a minority of the T2D-associated SNPs were validated as cis-eQTLs for nearby transcripts, AEI analysis indicated presence of other cis-regulatory polymorphisms in 54% of these transcripts. CONCLUSIONS: Our study suggests that a small subset of GWAS-identified SNPs may increase T2D susceptibility by modulating expression of nearby transcripts in adipose or muscle.


Assuntos
Diabetes Mellitus Tipo 2/genética , Ativação Linfocitária/genética , Músculo Esquelético/metabolismo , Polimorfismo Genético/genética , Gordura Subcutânea/metabolismo , Adulto , Desequilíbrio Alélico , População Negra , Linhagem Celular , Feminino , Estudos de Associação Genética , Genótipo , Glucose , Teste de Tolerância a Glucose , Humanos , Insulina/sangue , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , População Branca , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...