Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(10): 7164-7177, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24459147

RESUMO

The clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) system is a prokaryotic defense mechanism against foreign genetic elements. A plethora of CRISPR-Cas versions exist, with more than 40 different Cas protein families and several different molecular approaches to fight the invading DNA. One of the key players in the system is the CRISPR-derived RNA (crRNA), which directs the invader-degrading Cas protein complex to the invader. The CRISPR-Cas types I and III use the Cas6 protein to generate mature crRNAs. Here, we show that the Cas6 protein is necessary for crRNA production but that additional Cas proteins that form a CRISPR-associated complex for antiviral defense (Cascade)-like complex are needed for crRNA stability in the CRISPR-Cas type I-B system in Haloferax volcanii in vivo. Deletion of the cas6 gene results in the loss of mature crRNAs and interference. However, cells that have the complete cas gene cluster (cas1-8b) removed and are transformed with the cas6 gene are not able to produce and stably maintain mature crRNAs. crRNA production and stability is rescued only if cas5, -6, and -7 are present. Mutational analysis of the cas6 gene reveals three amino acids (His-41, Gly-256, and Gly-258) that are essential for pre-crRNA cleavage, whereas the mutation of two amino acids (Ser-115 and Ser-224) leads to an increase of crRNA amounts. This is the first systematic in vivo analysis of Cas6 protein variants. In addition, we show that the H. volcanii I-B system contains a Cascade-like complex with a Cas7, Cas5, and Cas6 core that protects the crRNA.


Assuntos
Proteínas Arqueais/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Estabilidade de RNA , RNA Arqueal/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Dados de Sequência Molecular
2.
Genome Biol ; 15(1): R17, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24451197

RESUMO

We present GraphProt, a computational framework for learning sequence- and structure-binding preferences of RNA-binding proteins (RBPs) from high-throughput experimental data. We benchmark GraphProt, demonstrating that the modeled binding preferences conform to the literature, and showcase the biological relevance and two applications of GraphProt models. First, estimated binding affinities correlate with experimental measurements. Second, predicted Ago2 targets display higher levels of expression upon Ago2 knockdown, whereas control targets do not. Computational binding models, such as those provided by GraphProt, are essential for predicting RBP binding sites and affinities in all tissues. GraphProt is freely available at http://www.bioinf.uni-freiburg.de/Software/GraphProt.


Assuntos
Simulação por Computador , Modelos Moleculares , Proteínas de Ligação a RNA/genética , Sítios de Ligação/genética , Humanos , Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA , Software , Transcriptoma
3.
Biochem Soc Trans ; 41(6): 1444-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24256235

RESUMO

Uptake of foreign mobile genetic elements is often detrimental and can result in cell death. For protection against invasion, prokaryotes have developed several defence mechanisms, which take effect at all stages of infection; an example is the recently discovered CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) immune system. This defence system directly degrades invading genetic material and is present in almost all archaea and many bacteria. Current data indicate a large variety of mechanistic molecular approaches. Although almost all archaea carry this defence weapon, only a few archaeal systems have been fully characterized. In the present paper, we summarize the prerequisites for the detection and degradation of invaders in the halophilic archaeon Haloferax volcanii. H. volcanii encodes a subtype I-B CRISPR-Cas system and the defence can be triggered by a plasmid-based invader. Six different target-interference motifs are recognized by the Haloferax defence and a 9-nt non-contiguous seed sequence is essential. The repeat sequence has the potential to fold into a minimal stem-loop structure, which is conserved in haloarchaea and might be recognized by the Cas6 endoribonuclease during the processing of CRISPR loci into mature crRNA (CRISPR RNA). Individual crRNA species were present in very different concentrations according to an RNA-Seq analysis and many were unable to trigger a successful defence reaction. Recognition of the plasmid invader does not depend on its copy number, but instead results indicate a dependency on the type of origin present on the plasmid.


Assuntos
Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Haloferax volcanii/genética , Haloferax volcanii/imunologia , RNA Arqueal/genética , RNA Arqueal/metabolismo
4.
Nucleic Acids Res ; 41(17): 8034-44, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23863837

RESUMO

Central to Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas systems are repeated RNA sequences that serve as Cas-protein-binding templates. Classification is based on the architectural composition of associated Cas proteins, considering repeat evolution is essential to complete the picture. We compiled the largest data set of CRISPRs to date, performed comprehensive, independent clustering analyses and identified a novel set of 40 conserved sequence families and 33 potential structure motifs for Cas-endoribonucleases with some distinct conservation patterns. Evolutionary relationships are presented as a hierarchical map of sequence and structure similarities for both a quick and detailed insight into the diversity of CRISPR-Cas systems. In a comparison with Cas-subtypes, I-C, I-E, I-F and type II were strongly coupled and the remaining type I and type III subtypes were loosely coupled to repeat and Cas1 evolution, respectively. Subtypes with a strong link to CRISPR evolution were almost exclusive to bacteria; nevertheless, we identified rare examples of potential horizontal transfer of I-C and I-E systems into archaeal organisms. Our easy-to-use web server provides an automated assignment of newly sequenced CRISPRs to our classification system and enables more informed choices on future hypotheses in CRISPR-Cas research: http://rna.informatik.uni-freiburg.de/CRISPRmap.


Assuntos
Sequências Repetidas Invertidas , RNA Arqueal/química , RNA Bacteriano/química , Imunidade Adaptativa/genética , Archaea/genética , Archaea/imunologia , Proteínas Arqueais/química , Proteínas Arqueais/classificação , Bactérias/genética , Bactérias/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Análise por Conglomerados , Sequência Conservada , Crenarchaeota/genética , Euryarchaeota/genética , Evolução Molecular , Transferência Genética Horizontal , Internet , Motivos de Nucleotídeos , Clivagem do RNA , RNA Arqueal/classificação , RNA Bacteriano/classificação , Software
5.
RNA Biol ; 10(5): 779-91, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23619576

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR) system represents a highly adaptive and heritable defense system against foreign nucleic acids in bacteria and archaea. We analyzed the two CRISPR-Cas systems in Methanosarcina mazei strain Gö1. Although belonging to different subtypes (I-B and III-B), the leaders and repeats of both loci are nearly identical. Also, despite many point mutations in each array, a common hairpin motif was identified in the repeats by a bioinformatics analysis and in vitro structural probing. The expression and maturation of CRISPR-derived RNAs (crRNAs) were studied in vitro and in vivo. Both respective potential Cas6b-type endonucleases were purified and their activity tested in vitro. Each protein showed significant activity and could cleave both repeats at the same processing site. Cas6b of subtype III-B, however, was significantly more efficient in its cleavage activity compared with Cas6b of subtype I-B. Northern blot and differential RNAseq analyses were performed to investigate in vivo transcription and maturation of crRNAs, revealing generally very low expression of both systems, whereas significant induction at high NaCl concentrations was observed. crRNAs derived proximal to the leader were generally more abundant than distal ones and in vivo processing sites were clarified for both loci, confirming the previously well-established 8 nt 5' repeat tags. The 3'-ends were more diverse, but generally ended in a prefix of the following repeat sequence (3'-tag). The analysis further revealed a 5'-hydroxy and 3'-phosphate termini architecture of small crRNAs specific for cleavage products of Cas6 endonucleases from type I-E and I-F and type III-B.


Assuntos
Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas , Methanosarcina/metabolismo , RNA Arqueal/química , RNA Arqueal/genética , Sequência de Bases , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Biologia Computacional , Methanosarcina/genética , Dados de Sequência Molecular , Processamento Pós-Transcricional do RNA , RNA Arqueal/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Cloreto de Sódio
6.
RNA Biol ; 10(5): 865-74, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23594992

RESUMO

To fend off foreign genetic elements, prokaryotes have developed several defense systems. The most recently discovered defense system, CRISPR/Cas, is sequence-specific, adaptive and heritable. The two central components of this system are the Cas proteins and the CRISPR RNA. The latter consists of repeat sequences that are interspersed with spacer sequences. The CRISPR locus is transcribed into a precursor RNA that is subsequently processed into short crRNAs. CRISPR/Cas systems have been identified in bacteria and archaea, and data show that many variations of this system exist. We analyzed the requirements for a successful defense reaction in the halophilic archaeon Haloferax volcanii. Haloferax encodes a CRISPR/Cas system of the I-B subtype, about which very little is known. Analysis of the mature crRNAs revealed that they contain a spacer as their central element, which is preceded by an eight-nucleotide-long 5' handle that originates from the upstream repeat. The repeat sequences have the potential to fold into a minimal stem loop. Sequencing of the crRNA population indicated that not all of the spacers that are encoded by the three CRISPR loci are present in the same abundance. By challenging Haloferax with an invader plasmid, we demonstrated that the interaction of the crRNA with the invader DNA requires a 10-nucleotide-long seed sequence. In addition, we found that not all of the crRNAs from the three CRISPR loci are effective at triggering the degradation of invader plasmids. The interference does not seem to be influenced by the copy number of the invader plasmid.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Haloferax volcanii/genética , Plasmídeos , RNA Arqueal/química , RNA Arqueal/genética , Sequência de Bases , Proteínas Associadas a CRISPR/imunologia , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , DNA/genética , Haloferax volcanii/imunologia , Sequências Repetidas Invertidas , Dados de Sequência Molecular , Mutagênese , Filogenia , Processamento Pós-Transcricional do RNA , RNA Arqueal/imunologia , Alinhamento de Sequência , Análise de Sequência de RNA
7.
PLoS One ; 8(2): e56470, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23441196

RESUMO

The CRISPR-Cas (Clustered Regularly Interspaced Short Palindrome Repeats--CRISPR associated proteins) system provides adaptive immunity in archaea and bacteria. A hallmark of CRISPR-Cas is the involvement of short crRNAs that guide associated proteins in the destruction of invading DNA or RNA. We present three fundamentally distinct processing pathways in the cyanobacterium Synechocystis sp. PCC6803 for a subtype I-D (CRISPR1), and two type III systems (CRISPR2 and CRISPR3), which are located together on the plasmid pSYSA. Using high-throughput transcriptome analyses and assays of transcript accumulation we found all CRISPR loci to be highly expressed, but the individual crRNAs had profoundly varying abundances despite single transcription start sites for each array. In a computational analysis, CRISPR3 spacers with stable secondary structures displayed a greater ratio of degradation products. These structures might interfere with the loading of the crRNAs into RNP complexes, explaining the varying abundancies. The maturation of CRISPR1 and CRISPR2 transcripts depends on at least two different Cas6 proteins. Mutation of gene sll7090, encoding a Cmr2 protein led to the disappearance of all CRISPR3-derived crRNAs, providing in vivo evidence for a function of Cmr2 in the maturation, regulation of expression, Cmr complex formation or stabilization of CRISPR3 transcripts. Finally, we optimized CRISPR repeat structure prediction and the results indicate that the spacer context can influence individual repeat structures.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Sistemas de Secreção Bacterianos , Endorribonucleases/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Ordem dos Genes , Mutação , Conformação de Ácido Nucleico , Plasmídeos/genética , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Synechocystis/imunologia , Sítio de Iniciação de Transcrição
8.
RNA Biol ; 10(5): 700-7, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23392318

RESUMO

The prokaryotic antiviral defense systems CRISP R (clustered regularly interspaced short palindromic repeats)/Cas (CRISP Rassociated) employs short crRNAs (CRISP R RNAs) to target invading viral nucleic acids. A short spacer sequence of these crRNAs can be derived from a viral genome and recognizes a reoccurring attack of a virus via base complementarity. We analyzed the effect of spacer sequences on the maturation of crRNAs of the subtype I-B Methanococcus maripaludis C5 CRISP R cluster. The responsible endonuclease, termed Cas6b, bound non-hydrolyzable repeat RNA as a dimer and mature crRNA as a monomer. Comparative analysis of Cas6b processing of individual spacer-repeat-spacer RNA substrates and crRNA stability revealed the potential influence of spacer sequence and length on these parameters. Correlation of these observations with the variable abundance of crRNAs visualized by deep-sequencing analyses is discussed. Finally, insertion of spacer and repeat sequences with archaeal poly-T termination signals is suggested to be prevented in archaeal CRISP R/Cas systems.


Assuntos
Proteínas de Bactérias/química , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Mathanococcus/metabolismo , Estabilidade de RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Mathanococcus/genética , Dados de Sequência Molecular , Multimerização Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
Nucleic Acids Res ; 40(12): 5215-26, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22373926

RESUMO

Determining the structural properties of mRNA is key to understanding vital post-transcriptional processes. As experimental data on mRNA structure are scarce, accurate structure prediction is required to characterize RNA regulatory mechanisms. Although various structure prediction approaches are available, it is often unclear which to choose and how to set their parameters. Furthermore, no standard measure to compare predictions of local structure exists. We assessed the performance of different methods using two types of data: transcriptome-wide enzymatic probing information and a large, curated set of cis-regulatory elements. To compare the approaches, we introduced structure accuracy, a measure that is applicable to both global and local methods. Our results showed that local folding was more accurate than the classic global approach. We investigated how the locality parameters, maximum base pair span and window size, influenced the prediction performance. A span of 150 provided a reasonable balance between maximizing the number of accurately predicted base pairs, while minimizing effects of incorrect long-range predictions. We characterized the error at artificial sequence ends, which we reduced by setting the window size sufficiently greater than the maximum span. Our method, LocalFold, diminished all border effects and produced the most robust performance.


Assuntos
RNA Mensageiro/química , Sequências Reguladoras de Ácido Ribonucleico , Algoritmos , Pareamento de Bases , Conformação de Ácido Nucleico , Dobramento de RNA , RNA Fúngico/química , Software
11.
Bioinformatics ; 25(23): 3128-34, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19808875

RESUMO

MOTIVATION: The goal of present -omics sciences is to understand biological systems as a whole in terms of interactions of the individual cellular components. One of the main building blocks in this field of study is proteomics where tandem mass spectrometry (LC-MS/MS) in combination with isotopic labelling techniques provides a common way to obtain a direct insight into regulation at the protein level. Methods to identify and quantify the peptides contained in a sample are well established, and their output usually results in lists of identified proteins and calculated relative abundance values. The next step is to move ahead from these abstract lists and apply statistical inference methods to compare measurements, to identify genes that are significantly up- or down-regulated, or to detect clusters of proteins with similar expression profiles. RESULTS: We introduce the Rich Internet Application (RIA) Qupe providing comprehensive data management and analysis functions for LC-MS/MS experiments. Starting with the import of mass spectra data the system guides the experimenter through the process of protein identification by database search, the calculation of protein abundance ratios, and in particular, the statistical evaluation of the quantification results including multivariate analysis methods such as analysis of variance or hierarchical cluster analysis. While a data model to store these results has been developed, a well-defined programming interface facilitates the integration of novel approaches. A compute cluster is utilized to distribute computationally intensive calculations, and a web service allows to interchange information with other -omics software applications. To demonstrate that Qupe represents a step forward in quantitative proteomics analysis an application study on Corynebacterium glutamicum has been carried out. AVAILABILITY AND IMPLEMENTATION: Qupe is implemented in Java utilizing Hibernate, Echo2, R and the Spring framework. We encourage the usage of the RIA in the sense of the 'software as a service' concept, maintained on our servers and accessible at the following location: http://qupe.cebitec.uni-bielefeld.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Espectrometria de Massas/métodos , Proteoma/análise , Proteômica/métodos , Software , Bases de Dados de Proteínas , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...